With the hope of directing future bottom-up fabrication through bulk external stimuli (such as electric fields) on nanometer-sized transporters, we sought to study controlled molecular motion on surfaces through the rational design of surface-capable molecular structures called nanocars. Here we show that the observed movement of the nanocars is a new type of fullerene-based wheel-like rolling motion, not stick-slip or sliding translation, due to evidence including directional preference in both direct and indirect manipulation and studies of related molecular structures.
In this study, highly stable, low-temperature-processed planar lead halide perovskite (MAPbI 3– x Cl x ) solar cells with NiO x interfaces have been developed. Our solar cells maintain over 85% of the initial efficiency for more than 670 h, at the maximum power point tracking (MPPT) under 1 sun illumination (no UV-light filtering) at 30 °C, and over 73% of the initial efficiency for more than 1000 h, at the accelerating aging test (85 °C) under the same MPPT condition. Storing the encapsulated devices at 85 °C in dark over 1000 h revealed no performance degradation. The key factor for the prolonged lifetime of the devices was the sputter-deposited polycrystalline NiO x hole transport layer (HTL). We observed that the properties of NiO x are dependent on its composition. At a higher Ni 3+ /Ni 2+ ratio, the conductivity of NiO x is higher, but at the expense of optical transmittance. We obtained the highest power conversion efficiency of 15.2% at the optimized NiO x condition. The sputtered NiO x films were used to fabricate solar cells without annealing or any other treatments. The device stability enhanced significantly compared to that of the devices with PEDOT:PSS HTL. We clearly demonstrated that the illumination-induced degradation depends heavily on the nature of the HTL in the inverted perovskite solar cells (PVSCs). The sputtered NiO x HTL can be a good candidate to solve stability problems in the lead halide PVSCs.
Design, syntheses, and testing of new, fullerene-wheeled single molecular nanomachines, namely, nanocars and nanotrucks, are presented. These nanovehicles are composed of three basic components that include spherical fullerene wheels, freely rotating alkynyl axles, and a molecular chassis. The use of spherical wheels based on C60 and freely rotating axles based on alkynes permits directed nanoscale rolling of the molecular structure on gold surfaces. The rolling motion observed by STM resembles the same motion performed by macroscopic entities in which rolling occurs perpendicular to the axles. A new synthesis methodology, in situ ethynylation of fullerenes, was developed for the realization of the fullerene-wheeled molecular machines. Four generations of the fullerene-wheeled structures were developed, and the latest fourth generation nanocar, 3b, along with three-wheeled triangular compounds, 4a and 4b, provided definitive evidence for fullerene-based wheel-like rolling motion, not stick-slip or sliding translation. The studies here underscore the ability to control directionality of motion in molecular-sized nanostructures through precise molecular design and synthesis.
[structure: see text] With the eventual goal of demonstrating a motorized nanocar, the key structure has been synthesized which bears a light-activated unidirectional molecular motor and an oligo(phenylene ethynylene) chassis and axle system with four carboranes to serve as the wheels. Kinetics studies in solution show that the motor indeed rotates upon irradiation with 365 nm light, and the fullerene-free carborane wheel system is an essential design feature for motor operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.