Dental pulp stem cells (DPSCs) are considered a remarkable source for the regeneration of dental pulp tissues, but their therapeutic effectiveness remains limited, especially in elderly people. Previous studies found that senescence has a negative effect on the proliferation and differentiation potential of DPSCs. Moreover, numerous long non-coding RNA (lncRNA) and messenger RNA were significantly differentially regulated in DPSCs from young and elderly donors. However, the changes in DPSCs protein during senescence have not been addressed. In this study, differences in DPSC protein expression profiles and coexpression of protein and lncRNA were analyzed using proteomics and bioinformatics. The results showed 75 upregulated proteins and 69 downregulated proteins in DPSCs from elderly donors. Vasopressin-regulated water reabsorption, Parkinson's disease, Alzheimer's disease, and protein export were the top four functional pathways associated with DPSCs. High mobility group N1 (HMGN1), HMGN2, UCHL1, and the family with sequence similarity 96 member B homeobox gene (FAM96B) were associated with DPSCs senescence. Then, we investigated FAM96B function in DPSCs. After FAM96B depletion, telomerase reverse transcriptase (TERT) activity decreased, but the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and the protein levels of p16, p53 were significantly increased. Gain-of-function assays suggested that FAM96B overexpression was positively correlated with TERT activity, but negatively correlated with the number of SA-β-gal positive cells and the protein levels of P16 and P53. Moreover, after FAM96B overexpression, the results showed a significant increase in alkaline phosphatase activity and an enhanced mineralization ability of DPSCs. The reverse-transcription polymerase chain reaction results also showed that dentin sialophosphoprotein and osteocalcin were expressed at greater levels. The carboxyfluorescein succinimidyl ester (CFSE) results displayed that FAM96B increased the proliferation potential of DPSCs. Our study revealed candidate proteins that might be related to DPSCs senescence and provided information to elucidate the mechanism of the biological changes in DPSCs' aging. Moreover, FAM96B was demonstrated to play an important role in suppressing DPSCs senescence and promoting osteogenic differentiation and proliferation.Abbreviations: DPSCs, dental pulp stem cells; FAM96B, the family with sequence similarity 96 member B homeobox gene; MSCs, mesenchymal stem cells; shRNAs, short-hairpin RNAs; TERT, telomerase reverse transcriptase † Hanbing Liang and Wenzhi Li contributed equally to this work.
ObjectivesStem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation.Materials and MethodsShort hairpin RNAs and full‐length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression. Western blotting, real‐time RT‐PCR, alizarin red staining, and scratch migration assays were used to study the role of KDM4D and the ribosomal protein encoded by RPS5 in SCAPs. RNA microarray, chromatin Immunoprecipitation (ChIP), and co‐immunoprecipitation (Co‐IP) assays were performed to explore the underlying molecular mechanisms.ResultsKDM4D enhanced the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. The microarray results revealed that 88 mRNAs were differentially expressed in KDM4D‐overexpressed SCAPs. ChIP results showed knock‐down of KDM4D increased the level of H3K9me2 and H3K9me3 in CNR1 promoter region. There were 37 possible binding partners of KDM4D. KDM4D was found to combine with RPS5, which also promoted the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs.ConclusionsKDM4D promoted the osteo/dentinogenic differentiation and migration potential of SCAPs in combination with RPS5, which provides a therapeutic clue for improving SCAPs‐based dental tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.