To improve automobile safety, identifying driver fatigue is considerably crucial because it is one of the main causes of traffic accidents. In this research, smart systems based on a triboelectric nanogenerator are designed, which can provide driver status monitoring and fatigue warning in real time. The smart system consists of a self-powered steering-wheel angle sensor (SSAS) and a signal processing unit. The SSAS, which comprises a stator, a rotor, and a sleeve, is mounted on the steering rod, and the electrodes are designed with a phase difference to improve the resolution of the sensor. The turning angle of the steering wheel operated by the driver is recorded by the SSAS; meanwhile, the number of rotations, the average angle, and other parameters in the driver's recorded data are analyzed by the signal processing unit from which a warning threshold for each parameter is determined. The system assesses the status of the driver in real-time by comparing these parameters and threshold values, and experimental results demonstrate that driver status is accurately judged. This work has important potential applications in the fields of traffic safety and intelligent driving.
Drug abuse is a public health and social problem. A number of studies have reported that drug addiction is associated with microRNAs (miRNAs). By comparing the expression of miRNAs in the serum exosomes of methamphetamine-dependent and ketamine-dependent rats, the aim of the present study was to provide insights into the miRNA-mediated associations between the two groups. Published results on conditioned place preference (CPP) in rats conditioned by methamphetamine and ketamine were replicated. The expression of miRNAs in serum exosomes were determined by gene-chip sequencing. The potential target genes of differentially expressed (DE) co-miRNAs were predicted in the methamphetamine and ketamine rats, then functional analysis of their target genes was performed. Methamphetamine and ketamine reward greatly increased the activity time and distance in the intrinsically non-preferred side of the behavioral apparatus when compared with controlled rats (P<0.01). In addition, methamphetamine upregulated the expression of 276 miRNAs and downregulated 25 miRNAs, while ketamine only downregulated the expression of 267 miRNAs. Ten DE co-miRNAs in the two model groups were identified. Functional analysis revealed that DE co-miRNAs are involved in the development of addiction at different stages, and their target genes were enriched in ‘vesicular transport’, ‘amphetamine addiction’, ‘dopaminergic synapse’ and ‘GABAergic synapse’. Therefore, it was suggested that these co-miRNAs may have a strong association with drug addiction, and they may be involved in the different addiction processes, which partly explains methamphetamine and ketamine addiction.
POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500 keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.