A wheat rust survey was conducted in Iraq in 2019 and collected 27 stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikks. & E. Henn.) samples. Seven samples were viable, and they were tested for races of P. graminis f. sp. tritici at the Regional Cereal Rust Research Center (RCRRC) in Izmir, Turkey under strict quarantine procedures. Two 0.5 cm segments of each infected stem sheath were incubated in a petri dish at 20°C for three hours for re-hydration of urediniospores, which were multiplied on 10-day old seedlings of susceptible cultivar Morocco grown in a spore free growth chamber at 18°C and 16 hours light. Inoculated seedlings underwent a dew period at 18°C for 16 hours dark and 8 hours fluorescent light and 95% relative humidity. Three days after moving the pots to a growth chamber with eight hours dark at 18°C and 16 hours light (300 µmol m-2s-1), each pot was covered using a cellophane bag. Bulk urediniospores of each collection were collected 14 days post-inoculation from a cellophane bag using a mini cyclone spore collector connected to a gelatin capsule. One ml of 3M Novec™ oil was added to each capsule, and spores were inoculated onto 20 North American stem rust differential lines using the standard procedures (Jin et al. 2008). Pre-inoculation, inoculation, incubation, and post-inoculation conditions were the same as above. Seedling infection types (ITs) were recorded 14 days post-inoculation using 0 to 4 scale (Stakman et al. 1962). Race designation followed the five- letter code nomenclature described by Jin et al. (2008). Out of the seven samples, four were typed as TKKTF, two as TKTTF, and one collected from an advanced breeding bread wheat line “Shahoo 2” (Inqalab 91*2/Tukuru) in a trial site at Halabja governorate showed mixed ITs of 11+ and 3+ for lines carrying Sr11, Sr24, Sr36, and Sr31. Three single pustule (SP) isolates were developed from the IT of 3+ pustules collected from the Sr31 tester line, and one SP isolate was developed from the IT 11+ pustule collected from the Sr11 source. After spore multiplication, the SP-derived isolates were inoculated on the 20 North American differential lines. To confirm virulence/avirulence on Sr24, Sr31, and Sr36, cultivars Siouxland (PI 483469, Sr24+Sr31) and Sisson (PI 617053, Sr36+Sr31) were also inoculated. All seedling assays were repeated three times. The three SP isolates virulent on Sr31 were designated as race TTKTT, and the SP isolate virulent on Sr11 was designated as TKTTF. Seedling ITs of 3+ and 0; were recorded for Siouxland and Sisson against TTKTT, respectively, and both cultivars showed IT of 1+ against TKTTF. Race TKTTF was similar to TKKTF except for additional virulence on Sr36, and TTKTT differed from the other two races being virulent on Sr24 and Sr31. DNA analysis of three TTKTT isolates from Kenya and the TTKTT isolate from Iraq using a diagnostic qPCR assay developed by the USDA-ARS Cereals Disease Laboratory (Ug99 RG stage 1, Szabo unpublished) confirmed that all tested isolates belonged to the Ug99 lineage. Race TTKTT was first reported from Kenya in 2014 (Patpour et al. 2016), and in 2018 from Ethiopia (Hei et al. 2020). We report the first detection of TTKTT in Iraq and the Middle East region. This represents only the third instance of a member of the Ug99 race group outside of Africa since first detection of race TTKSK in Yemen in 2006, and Iran in 2007 (Nazari et al. 2009). The continued spread of stem rust races with complex virulence and the increasing frequency and early onset of stem rust infections in the Middle East is a cause for concern. Continuous support for rust surveillance and race typing in this region remains crucial. References: Hei, N. B., et al. 2020. Plant Dis. 104:982. Jin, Y., et al. 2008. Plant Dis. 92:923-926. Nazari, K., et al. 2009. Plant Dis. 93:317. Patpour, M., et al. 2016. Plant Dis. 100:522. Stakman, E. C., et al. 1962. Identification of physiological races of Puccinia graminis var. tritici. U. S. Dep. Agric. ARS E-617.
(Gahan, 1927) and Trioxys humuli Mackauer, 1960 are new records for the Turkish fauna. New hosts to four parasitoid species were also listed.
Severe wheat stem rust caused by Puccinia graminis Pers.:Pers. f. sp. tritici Erikss. (Pgt) can result in complete crop failure. In recent years, the increasing frequency and the early onset of stem rust in Central West Asia and North Africa (CWANA) has become a big concern. The Sr24 resistance gene, one of the most effective stem rust resistance genes effective against most P. graminis f. sp. tritici races worldwide, has been widely deployed. Until the recent establishment of virulence to Sr24 within the Ug99 lineage of the pathogen in Africa (Hei et al. 2020; Jin et al. 2008; Patpour et al. 2015), Iraq (Nazari et al., 2021), occasional detections of races virulent to Sr24 were reported in South Africa (Le Roux and Rijkenberg 1987), India (Bhardwaj et al. 1990), Germany (Olivera Firpo et al. 2017), Georgia (Olivera, et al. 2019), and Western Siberia (Skolotneva et al., 2020). During the rust surveys conducted in Sinops, Samsun, and Kastomonu in the Black Sea region in northern Turkey in 2018, 19 isolates were collected. Single pustule (SP) isolates were developed and used in race analysis in the Biosafety Rust Laboratory, Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey. Sample recovery, experimental procedures for pre-inoculation, inoculation, incubation, and race typing were conducted as previously described (Nazari et al. 2021). Among the tested SP isolates, two isolates showed a high infection type (IT) of 33+ on the Sr24 tester line (Little Club/Agent) and a low infection type of 11+ for the source of Sr31 (Benno/6*LMPG-6). Eight SP isolates were further developed from the high IT 33+ pustules collected from the Sr24 tester line. After spore multiplications, they were used in inoculation of the 20 North American stem rust single-gene lines used to differentiate races of P. graminis f. sp. tritici, plus Trident (Sr38+), Siouxland (Sr24+Sr31), and Sisson (Sr31+Sr36). Five SP-derived isolates with IT 33+ on the Sr24 single-gene line collected from Samsun (Alacam – Etyemez; Location: N 41.61889 E 35.55722) and Sinop (Merkez-Sanlıoglu; Location: N 41.85556 E 35.04889) were identified as race TKKTP and the remaining three SP isolates as race TKTTP. In 2020, we detected two isolates of TKKTP among the stem rust samples from Tunisia submitted to RCRRC. These two isolates were collected from bread wheat cultivars Heydna and Tahmet at a trial site near Bou Salem in Western Tunisia (Location: N 36.5351 E 8.95486). Based on the negative results of the Stage 1 test using a suite of four real-time polymerase chain reaction assays diagnostic for the Ug99 race group developed by Szabo (2012), these two races should not belong to the Ug99 race group when compared to the reference Ug99 race TTKTT from Kenya. These races were virulent to Sr5, Sr21, Sr9e, Sr7b, Sr6, Sr8a, Sr9g, Sr9b, Sr30, Sr17, Sr9a, Sr9d, Sr10, SrTmp, Sr24, Sr38, and SrMcN. In addition to these genes, race TKTTP was virulent to Sr36. Both races were avirulent to Sr11 and Sr31. To our knowledge, this is the first report of P. graminis f. sp. tritici races with the Sr24 virulence in Turkey and Tunisia. The results reflect an increasing trend of virulence to Sr24 in the pathogen populations, and raise a great concern given the deployment of the Sr24 resistance gene in widely grown wheat cultivars worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.