This paper presents an approach for text line segmentation which combines connected component based and projection based information to take advantage of aspects of both methods. The proposed system finds baselines of each connected component. Lines are detected by grouping baselines of connected components belonging to each line by projection information. Components are assigned to lines according to different distance metrics with respect to their size. This study is one of the rare studies that apply line segmentation to Ottoman documents. Further, it proposes a new method, Fourier curve fitting, to detect the peaks in a projection profile. The algorithm is demonstrated on different printed and handwritten Ottoman datasets. Results show that the method manages to segment lines both from printed and handwritten documents under different writing conditions at least with 92% accuracy. International Conference on Frontiers in Handwriting Recognition978-0-7695-4774-9/12 $26.00
In this study, we address the problem of matching patterns in Kufic calligraphy images. Being used as a decorative element, Kufic images have been designed in a way that makes it difficult to be read by non-experts. Therefore, available methods for handwriting recognition are not easily applicable to the recognition of Kufic patterns. In this study, we propose two new methods for Kufic pattern matching. The first method approximates the contours of connected components into lines and then utilizes chain code representation. Sequence matching techniques with a penalty for gaps are exploited for handling the variations between different instances of sub-patterns. In the second method, skeletons of connected components are represented as a graph where junction and end points are considered as nodes. Graph isomorphism techniques are then relaxed for partial graph matching. Methods are evaluated over a collection of 270 square Kufic images with 8,941 sub-patterns. Experimental results indicate that, besides retrieval and indexing of known patterns, our method also allows the discovery of new patterns.
ÖZETÇEOsmanlı Metin Arşivi Projesi kapsamında Osmanlı Türkçesi metinlerinin yüklenmesi, ikilileştirilmesi, satır ve kelime bölütlenmesi, etiketlenmesi, tanınması ve testlerinin yapılması amacıyla bir Genel Ag arabirimi geliştirilmiştir. Bu arabirim sayesinde Osmanlı arşivleriyle çalışan araştırmacıların uzmanlık yardımının alınması ve geliştirdigimiz tanıma teknolojilerinin elyazması arşivlere uygulanması mümkün hale gelmiştir. ABSTRACTWithin Ottoman Text Archive Project a web interface to aid in uploading, binarization, line and word segmentation, labeling, recognition and testing of the Ottoman Turkish texts has been developed. It became possible to retrieve expert knowledge of scholars working with Ottoman archives through this interface, and apply this knowledge in developing further technologies in transliteration of historical manuscripts.
Hareket analizi ve tanıma bilgisayarla görü alanında önemli ve zorlayıcı bir alan olarak görülmektedir ve insan hareketlerini tanımlamak için değişik teknikler kullanılmaktadır. Bu makalede zaman-mekansal özniteliklerin kullanılması tercih edilmiştir. Aynı zamanda, zaman-mekansal özniteliklerin oldukça yüksek ölçülü olmasından kaynaklanan boyutluluk sorunu ortaya çıkmaktadır ve geleneksel benzerlik ve eşleme algoritmaları bu problemin üstesinden gelememektedir. Bu sebeple, makalede yüksek boyutlu özniteliklerin eşleştirilmesi için farklı bir yöntem uygulanmıştır ve imgelerin eşleştirilmesi yöntemiyle videolar değişik hareketlere sınıflandırılmıştır.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.