This study intended to improve physiological characteristics of Magnolia officinalis bark (MOB) extracts by Aspergillus niger fermentation. M. officinalis bark was extracted using distilled water, 95% ethanol, and methanol, and it was then fermented by A. niger. The physiological characteristics of the fermented extracts, namely, tyrosinase inhibitory activity, antioxidant activity, antibacterial activity, and anti-skin-aging activity, were evaluated and compared with those of unfermented extracts. To determine the safety of the fermented extracts, their cytotoxicity was analyzed by measuring the cell viability of CCD-966SK and human epidermal melanocytes (HEMn) after exposure. The fermented methanol extract exhibited the highest antityrosinase activity, total phenolic content, and antioxidant activity. The total phenolic content of the extracts fermented by A. niger was 3.52 times greater than that of the unfermented extracts. The optimal IC50 values for tyrosinase inhibition and 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal by the A. niger-fermented extracts were 30 and 12 μg/mL, respectively. The fermented methanol extracts inhibited skin-aging-related enzymes such as collagenase, elastase, MMP-1, and MMP-2. Compared with the unfermented extracts, the fermented extracts also contained greater antibacterial activity against tested stains including MRSA. These results could be attributed to an increase in the concentration of original active compounds and the biosynthesis of new compounds during fermentation. In cytotoxicity assays, the A. niger-fermented extracts were nontoxic to CCD-966SK cells, even at 500 μg/mL. Hence, in general, methanol-extracted M. officinalis fermented by A. niger for 72 h has the most active antioxidant, skincare, or antiaging compounds for healthy food or cosmetics applications.
The striking rise of methicillin-resistant Staphylococcus aureus (MRSA) infections has become a serious threat to public health worldwide. In an effort to search for new anti-MRSA agents from natural products, a bioassay-guided phytochemical study was conducted on the semi-mangrove plant Myoporum bontioides A. Gray, which led to the isolation of two new sesquiterpene alkaloids (1 and 2) and six known furanosesquiterpenes (3–8). Their structures were elucidated on the basis of extensive analysis of their 1D, 2D NMR and mass spectroscopic data. These two new alkaloids (1 and 2) displayed potent anti-MRSA activity with MIC value of 6.25 μg/mL. This is the first report of sesquiterpene alkaloids from the plants of Myoporum genus and their anti-MRSA activity.
Staphylococcus spp., especially Staphylococcus aureus (S. aureus), is an important pathogen in hospital-acquired infection and food poisoning. Here, we developed a multienzyme isothermal rapid amplification combined with duplex quantitative PCR (duplex MIRA-qPCR) method, which can simultaneously detect the S. aureus species-specific conserved gene FMN-bgsfp and the Staphylococcus genus-specific conserved gene tuf. This assay enabled the amplification of DNA within 20 min at a constant temperature of 39 °C. Specificity analysis indicated that all nine common Staphylococcus species were positive and non-Staphylococcus spp. were negative for tuf gene, whereas S. aureus was positive, non-aureus Staphylococci species and non-Staphylococcus spp. were negative for FMN-bgsfp gene, suggesting that duplex MIRA-qPCR exhibited high specificity. Meanwhile, the sensitivity was tested and the limit of detection (LoD) was 3 × 102 CFU/mL. The coefficient variation values ranged from 0.13% to 2.09%, indicating that the assay had good repeatability. Furthermore, all the nine common Staphylococcus species (including S. aureus) could be detected from four kinds of simulated samples and the LoD of S. aureus was 8.56 × 103 CFU/mL. In conclusion, the duplex MIRA-qPCR has advantages of stronger specificity, lower detection threshold, shorter detection time, and simpler operation, which is an effective tool to detect S. aureus and non-aureus Staphylococci spp. infections rapidly.
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 are also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 in the pex1 mutant retarded root growth by reducing cell elongation resulting from an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice seedling. Upon further investigation, we uncovered the existence of a feedback loop between OsPEX1 transcription and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated the transcription levels of OsPEX1 and lignin-related genes, rescuing the development defects of the root in the pex1 mutant, whereas OsPEX1 negatively regulated GA level by altering the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated the transcription levels of lignin-related genes, whereas exogenous GA application downregulated their expression, accompanied by altered root growth phenotypes. Taken together, our studies reveal a possible molecular pathway of OsPEX1-mediated root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 transcription and GA biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.