A variety of cyanines provide versatile and sensitive agents acting as DNA stains and sensors and have been structurally modified to bind in the DNA minor groove in a sequence dependent manner. Similarly, we are developing a new set of cyanines that have been designed to achieve highly selective binding to DNA G-quadruplexes with much weaker binding to DNA duplexes. A systematic set of structurally analogous trimethine cyanines has been synthesized and evaluated for quadruplex targeting. The results reveal that elevated quadruplex binding and specificity are highly sensitive to the polymethine chain length, heterocyclic structure and intrinsic charge of the compound. Biophysical experiments show that the compounds display significant selectivity for quadruplex binding with a higher preference for parallel stranded quadruplexes, such as cMYC. NMR studies revealed the primary binding through an end-stacking mode and SPR studies showed the strongest compounds have primary KD values below 100 nM that are nearly 100-fold weaker for duplexes. The high selectivity of these newly designed trimethine cyanines for quadruplexes as well as their ability to discriminate between different quadruplexes are extremely promising features to develop them as novel probes for targeting quadruplexes in vivo.
G-Quadruplex DNA has been recognized as a highly appealing target for the development of new selective chemotherapeutics, which could result in markedly reduced toxicity toward normal cells. In particular, the cyanine dyes that bind selectively to G-quadruplex structures without targeting duplex DNA have attracted attention due to their high amenability to structural modifications that allows fine-tuning of their biomolecular interactions. We have previously reported pentamethine and symmetric trimethine cyanines designed to effectively bind G-quadruplexes through end stacking interactions. Herein, we are reporting a second generation of drug candidates, the asymmetric trimethine cyanines. These have been synthesized and evaluated for their quadruplex binding properties. Incorporating a benz [c,d]indolenine heterocyclic unit increased overall quadruplex binding, and elongating the alkyl length increases the quadruplex-to-duplex binding specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.