With recent progress in material science, resistive random access memory (RRAM) devices have attracted interest for nonvolatile, low-power, nondestructive readout, and high-density memories. Relevant performance parameters of RRAM devices include operating voltage, operation speed, resistance ratio, endurance, retention time, device yield, and multilevel storage. Numerous resistive-switching mechanisms, such as conductive filament, space-charge-limited conduction, trap charging and discharging, Schottky Emission, and Pool-Frenkel emission, have been proposed to explain the resistive switching of RRAM devices. In addition to a discussion of these mechanisms, the effects of electrode materials, doped oxide materials, and different configuration devices on the resistive-switching characteristics in nonvolatile memory applications, are reviewed. Finally, suggestions for future research, as well as the challenges awaiting RRAM devices, are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.