Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the overall biological roles and clinical significance of most lncRNAs in gastric carcinogenesis are not fully understood. We investigated the clinical significance, biological function, and mechanism of LINC01234 in gastric cancer. First, we analyzed LINC01234 alterations in gastric cancerous and noncancerous tissues through an analysis of sequencing data obtained from The Cancer Genome Atlas. Next, we evaluated the effect of LINC01234 on the gastric cancer cell proliferation and apoptosis, and its regulation of miR-204-5p by acting as a competing endogenous RNA (ceRNA). The animal model was used to support the experimental findings. We found that LINC01234 expression was significantly upregulated in gastric cancer tissues and was associated with larger tumor size, advanced TNM stage, lymph node metastasis, and shorter survival time. Furthermore, knockdown of LINC01234-induced apoptosis and growth arrest and inhibited tumorigenesis in mouse xenografts. Mechanistic investigations indicated that LINC01234 functioned as a ceRNA for miR-204-5p, thereby leading to the derepression of its endogenous target core-binding factor β (CBFB). LINC01234 is significantly overexpressed in gastric cancer, and LINC01234-miR-204-5p-CBFB axis plays a critical role in gastric cancer tumorigenesis. Our findings may provide a potential new target for gastric cancer diagnosis and therapy. .
There is increasing evidence that the expression of non-coding RNA and mRNA (messenger RNA) is significantly altered following high-dose ionizing radiation (IR), and their expression may play a critical role in cellular responses to IR. However, the role of non-coding RNA and mRNA in radiation protection, especially in the nervous system, remains unknown. In this study, microarray profiles were used to determine microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in the hypothalamus of mice that were pretreated with amifostine and subsequently exposed to high-dose IR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. We found that fewer miRNAs, lncRNAs, and mRNAs were induced by amifostine pre-treatment in exposed mice, which exhibited antagonistic effects compared to IR, indicating that amifostine attenuated the IR-induced effects on RNA profiles. GO and KEGG pathway analyses showed changes in a variety of signaling pathways involved in inflammatory responses during radioprotection following amifostine pre-treatment in exposed mice. Taken together, our study revealed that amifostine treatment altered or attenuated miRNA, lncRNA, and mRNA expression in the hypothalamus of exposed mice. These data provide a resource to further elucidate the mechanisms underlying amifostine-mediated radioprotection in the hypothalamus.
<div>Abstract<p><b>Purpose:</b> Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the overall biological roles and clinical significance of most lncRNAs in gastric carcinogenesis are not fully understood. We investigated the clinical significance, biological function, and mechanism of LINC01234 in gastric cancer.</p><p><b>Experimental Design:</b> First, we analyzed LINC01234 alterations in gastric cancerous and noncancerous tissues through an analysis of sequencing data obtained from The Cancer Genome Atlas. Next, we evaluated the effect of LINC01234 on the gastric cancer cell proliferation and apoptosis, and its regulation of miR-204-5p by acting as a competing endogenous RNA (ceRNA). The animal model was used to support the <i>in vitro</i> experimental findings.</p><p><b>Results:</b> We found that LINC01234 expression was significantly upregulated in gastric cancer tissues and was associated with larger tumor size, advanced TNM stage, lymph node metastasis, and shorter survival time. Furthermore, knockdown of LINC01234-induced apoptosis and growth arrest <i>in vitro</i> and inhibited tumorigenesis in mouse xenografts. Mechanistic investigations indicated that LINC01234 functioned as a ceRNA for miR-204-5p, thereby leading to the derepression of its endogenous target core-binding factor β (CBFB).</p><p><b>Conclusions:</b> LINC01234 is significantly overexpressed in gastric cancer, and LINC01234–miR-204-5p–CBFB axis plays a critical role in gastric cancer tumorigenesis. Our findings may provide a potential new target for gastric cancer diagnosis and therapy. <i>Clin Cancer Res; 24(8); 2002–14. ©2018 AACR</i>.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.