MicroRNAs (miRNAs) play important roles in several human cancers. Although miR-188 has been suggested to function as a tumor repressor in cancers, its precise role in glioma and the molecular mechanism remain unknown. In the present study, we investigated the effect of miR-188 on glioma and explored its relevant mechanisms. We found that the expression of miR-188 is dramatically downregulated in glioma tissues and cell lines. Subsequent investigation revealed that miR-188 expression was inversely correlated with β-catenin expression in glioma tissue samples. Using a luciferase reporter assay, β-catenin was determined to be a direct target of miR-188. Overexpression of miR-188 reduced β-catenin expression at both the mRNA and protein levels, and inhibition of miR-188 increased β-catenin expression. Moreover, we found that overexpression of miR-188 suppressed glioma cell proliferation and cell cycle G1-S transition, whereas inhibition of miR-188 promoted glioma cell proliferation. Importantly, silencing β-catenin recapitulated the cellular and molecular effects seen upon miR-188 overexpression, which included inhibiting glioma cell proliferation and G1-S transition. Taken together, our results demonstrated that miR-188 inhibits glioma cell proliferation by targeting β-catenin, representing an effective therapeutic strategy for glioma.
Hippocampus has attracted the attention of the neuroscientists for its involvement in a wide spectrum of higher-order brain functions and pathological conditions, especially its persistent neurogenesis in subgranular zone (SGZ). The development of hippocampus was intensively investigated on animals such as rodents. However, in prenatal human hippocampus, little information on the distribution of neural stem/progenitor cells, newly generated neurons and mature neurons is available and the timetable of a series of neurogenesis event is even more obscure. So in the present study, we aim at immunohistochemically providing more information on neurogenesis in prenatal human hippocampus from 9 weeks to 32 weeks of gestation. We found that the ki67-positive cells were always detected in hippocampus from 9 weeks to 32 weeks, with a peak at 9 weeks in cornu ammonis (CA) or 14 weeks in dentate gyrus (DG). At 9 weeks the nestin-expressing cells were distributed throughout the hippocampus, with concentrated immunoreactivity in intermediate zone (IZ), marginal zone (MZ), fimbria, and relatively sparse immunoreactivity in the ventricular zone (VZ) and hippocampal plate (HP). With development, the optical density (OD) and the number of nestin-positive cells decreased gradually. At 32 weeks, there were relatively more nestin-positive cells in DG than that in CA. About DCX-positive cells, they displayed a similar distribution as nestin-positive cells (immunoreactivity concentrated in IZ, MZ, fimbria and HP) and a dramatic decrease of OD or cell number density from 9 weeks on. NeuN-positive cells, with small nuclei, were firstly found in MZ and subplate of hippocampus at 9 weeks. After 14 weeks, many NeuN-positive cells extended from subplate into HP and the density of NeuN-positive cells peaked at 22 weeks. That the immunoreactivity for NeuN was the strongest and the nuclei were the biggest at 32 weeks suggests that the neurons reach maturity gradually. Therefore this study provides an important timetable of neurogenesis in prenatal human hippocampus for the clinicians in neuroscience or pediatrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.