DNA mismatch repair (MMR) is a critical mutation surveillance system for recognizing and repairing erroneous insertion, deletion, and disincorporation of base. Major components of mismatch repair system consist of MutH, MutL, and MutS. Dam methylates adenine to distinguish newly synthesized daughter strands from the parent strands. Employing a tyrosine-auxotrophic E. coli FX-11 strain, the mutation frequency can be determined by the number of tyrosine revertants and the cell viability of FX-11 with deficiencies in dam and mismatch repair proteins. This study showed that mutS defect produced a higher mutation frequency than mutH did. Interestingly, double defects in dam and mutS synergistically produced a dramatically higher spontaneous mutation frequency than the summation of mutation frequencies of FX-11 strains with individual deficiency of dam or mutS, suggesting that Dam may work with MutHL to partially accomplish the task of recognizing the mismatch sites to retain partial mismatch repair capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.