According to the literature statistics, only less than 10% of reported iterative learning control (ILC) methods have been devoted to the indirect approach. Motivated by the full potential of research opportunities in this field, a number of studies on indirect ILC were proposed recently, where ILC-based P-type control and learning-type model predictive control (L-MPC) are two successful stories. All indirect ILC algorithms consist of two loops: an ILC in the outer loop and a local controller in the inner loop. The local controllers are, respectively, a P-type controller in the ILC-based P-type control and a model predictive control (MPC) in the L-MPC. Logically, this leads to the question of what type of ILC should be chosen respectively for the two above-mentioned indirect ILC methods. In this study, P-type ILC and anticipatory P-type (A-P-type) ILC are studied and compared, because they are typical and widely implemented. Based on mathematical analysis and simulation test, it has been proved that the A-P-type ILC should be used in the ILC-based P-type control and while the P-type ILC should be used in the L-MPC. Furthermore, an improved L-MPC with batch-varying learning gain was proposed to handle the trade-off between convergence rate and robustness performance. The simulation results on injection molding process and a nonlinear batch process validated the feasibility and effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.