In distributed acoustic sensing (DAS) an optical fiber is transformed into an array of thousands of "virtual microphones." Most current DAS methodologies are based on coherent interference of Rayleigh backscattered light and thus are prone to signal fading. Hence, the sensitivities of the "microphones" fluctuate randomly along the fiber. Therefore, specifying the sensitivity of DAS without considering its random nature is incomplete and of limited value. In this Letter, the statistical properties of DAS SNR and DAS sensitivity are studied in detail for the first time, to the best of our knowledge. It is shown that the mean dynamic DAS SNR is proportional to the SNR obtained in a single measurement of the fiber's "static" backscatter profile and, in turn, to the energy of the interrogation pulse. Finally, the minimum input signal, which produces a specified mean DAS SNR, is proposed as a new figure of merit for the characterization of system performances and for comparison between the sensitivities of different DAS modalities.
We propose to establish a cancer biomarker based on the unique optical-mechanical signatures of cancer cells measured in a noncontact, label-free manner by optical interferometry. Using wide-field interferometric phase microscopy (IPM), implemented by a portable, off-axis, common-path and low-coherence interferometric module, we quantitatively measured the time-dependent, nanometer-scale optical thickness fluctuation maps of live cells in vitro. We found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells. Atomic force microscopy (AFM) measurements validated the results. Our study shows the potential of IPM as a simple clinical tool for aiding in diagnosis and monitoring of cancer.
We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates.
The use of fiber-optic sensors for ultrasound (US) detection has many advantages over conventional piezoelectric detectors. However, the issue of multiplexing remains a major challenge. Here, a novel approach for multiplexing fiber-optic based US sensors using swept frequency interferometry is introduced. Light from a coherent swept source propagates in an all-fiber interferometric network made of a reference arm and a parallel connection of N sensing arms. Each sensing arm comprises a short polyimide coated sensing section (~4cm), which is exposed to the US excitation, preceded by a delay of different length. When the instantaneous frequency of the laser is linearly swept, the receiver output contains N harmonic beat components which correspond to the various optical paths. Exposing the sensing sections to US excitation introduces phase modulation of the harmonic components. The US-induced signals can be separated in the frequency domain and be extracted from their carriers by common demodulation techniques. The method was demonstrated by multiplexing 4 sensing fibers and detecting microsecond US pulses which were generated by a 2.25MHz ultrasound transducer. The pulses were successfully measured by all sensing fibers without noticeable cross-talk.
We achieved continuous, noncontact wide-field imaging and characterization of drug release from a polymeric device in vitro by uniquely using off-axis interferometric imaging. Unlike the current gold-standard methods in this field, which are usually based on chromatography and spectroscopy, our method requires no user intervention during the experiment and involves less lab consumable instruments. Using a simplified interferometric imaging system, we experimentally demonstrate the characterization of anesthetic drug release (Bupivacaine) from a soy-based protein matrix, which is used as a skin substitute for wound dressing. Our results demonstrate the potential of interferometric imaging as an inexpensive and easy-to-use alternative for characterization of drug release in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.