Metagenome merupakan mikroorganisme yang diambil secara langsung dari alam. Proses sequencing genom dari metagenome mengakibatkan bercampurnya berbagai organisme. Hal ini menyebabkan kesulitan pada proses perakitan DNA. Oleh karena itu, dibutuhkan proses pemilahan yang disebut binning. Pada proses binning dengan pendekatan komposisi, teknik yang dilakukan adalah dengan supervised learning. Salah satu tahapan dalam supervised learning yaitu ekstraksi fitur, penelitian ini menggunakan metode ektraksi fitur n-mers. Besarnya parameter n pada metode ekstraksi fitur n-mers akan mengakibatkan dimensi fitur yang tinggi. Penelitian ini bertujuan untuk menerapkan algorime fast-correlation based filter (FCBF) untuk mereduksi dimensi fitur yang dihasilkan n-mers dan mengoptimasi parameter threshold pada fast-correlation based filter menggunakan algoritme genetika. Penelitian ini diuji menggunakan klasifikasi k-nearest neighbour. Performa terbaik diperoleh ketika n = 7 dan k = 3 dengan akurasi mencapai 99.41% dengan nilai threshold 0.67788. Dengan optimasi, waktu komputasi menjadi lebih efisien karena jumlah fitur sudah tereduksi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.