Simple and robust techniques are lacking to assess performance of flow quantification using dynamic imaging. We therefore developed a method to qualify flow quantification technologies using a physical compartment exchange phantom and image analysis tool. We validate and demonstrate utility of this method using dynamic PET and SPECT. Dynamic image sequences were acquired on two PET/CT and a cardiac dedicated SPECT (with and without attenuation and scatter corrections) systems. A two-compartment exchange model was fit to image derived time-activity curves to quantify flow rates. Flowmeter measured flow rates (20-300 mL/min) were set prior to imaging and were used as reference truth to which image derived flow rates were compared. Both PET cameras had excellent agreement with truth ( [Formula: see text]). High-end PET had no significant bias (p > 0.05) while lower-end PET had minimal slope bias (wash-in and wash-out slopes were 1.02 and 1.01) but no significant reduction in precision relative to high-end PET (<15% vs. <14% limits of agreement, p > 0.3). SPECT (without scatter and attenuation corrections) slope biases were noted (0.85 and 1.32) and attributed to camera saturation in early time frames. Analysis of wash-out rates from non-saturated, late time frames resulted in excellent agreement with truth ( [Formula: see text], slope = 0.97). Attenuation and scatter corrections did not significantly impact SPECT performance. The proposed phantom, software and quality assurance paradigm can be used to qualify imaging instrumentation and protocols for quantification of kinetic rate parameters using dynamic imaging.
The utility of Artificial Intelligence (AI) in healthcare strongly depends upon the quality of the data used to build models, and the confidence in the predictions they generate. Access to sufficient amounts of high-quality data to build accurate and reliable models remains problematic owing to substantive legal and ethical constraints in making clinically relevant research data available offsite. New technologies such as distributed learning offer a pathway forward, but unfortunately tend to suffer from a lack of transparency, which undermines trust in what data are used for the analysis. To address such issues, we hypothesized that, a novel distributed learning that combines sequential distributed learning with a blockchain-based platform, namely Chained Distributed Machine learning C-DistriM, would be feasible and would give a similar result as a standard centralized approach. C-DistriM enables health centers to dynamically participate in training distributed learning models. We demonstrate C-DistriM using the NSCLC-Radiomics open data to predict two-year lung-cancer survival. A comparison of the performance of this distributed solution, evaluated in six different scenarios, and the centralized approach, showed no statistically significant difference (AUCs between central and distributed models), all DeLong tests yielded p-val > 0.05. This methodology removes the need to blindly trust the computation in one specific server on a distributed learning network. This fusion of blockchain and distributed learning serves as a proof-of-concept to increase transparency, trust, and ultimately accelerate the adoption of AI in multicentric studies. We conclude that our blockchain-based model for sequential training on distributed datasets is a feasible approach, provides equivalent performance to the centralized approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.