Protecting the environment and enhancing food security are among the world’s greatest challenges. Fish consumption is widely considered to be the single significant dietary source of methylmercury. Nevertheless, by synthesizing data from the past six decades and using a variety of models, we find that rice could be a significant global dietary source of human methylmercury exposure, especially in South and Southeast Asia. In 2013, globalization caused 9.9% of human methylmercury exposure via the international rice trade and significantly aggravated rice-derived exposure in Africa (62%), Central Asia (98%) and Europe (42%). In 2016, 180 metric tons of mercury were generated in rice plants, 14-fold greater than that exported from oceans via global fisheries. We suggest that future research should consider both the joint ingestion of rice with fish and the food trade in methylmercury exposure assessments, and anthropogenic biovectors such as crops should be considered in the global mercury cycle.
Terrestrial mercury (Hg) transport, induced by water erosion and exacerbated by human activities, constitutes a major disturbance of the natural Hg cycle, but the processes are still not well understood. In this study, we modeled these processes using detailed information on erosion and Hg in soils and found that vast quantities of total Hg (THg) are being removed from land surfaces in China as a result of water erosion, which were estimated at 420 Mg/yr around 2010. This was significantly higher than the 240 Mg/yr mobilized around 1990. The erosion mechanism excavated substantial soil THg, which contributed to enhanced Hg(0) emissions to the atmosphere (4.9 Mg/yr around 2010) and its transport horizontally into streams (310 Mg/yr). Erosion-induced THg transport was driven by the extent of precipitation but was further enhanced or reduced by vegetation cover and land use changes in some regions. Surface air temperature may exacerbate the horizontal THg release into water. Our analyses quantified the processes of erosion-induced THg transport in terrestrial ecosystems, demonstrated its importance, and discussed how this transport is impacted by anthropogenic inputs and legacy THg in soils. We suggest that policy makers should pay more attention to legacy anthropogenic THg sources buried in soil.
In the past decades, the rapid development of the Internet
of Things
(IoT) technology and artificial intelligence (AI) has driven the research
boom of physical sensors. Material selection, structure design, and
performance research for physical sensors have attracted extensive
attention from worldwide researchers in the field of advanced manufacturing.
Significant technological progress has been made in the area of physical
sensors for applications in various fields such as electronic skin,
biomedicine, and tissue engineering. There are many methods (e.g.,
electrospinning, screen printing, or rotary coating) to prepare physical
sensors. Among them, nanofibers or nanofiber membranes prepared by
electrospinning have the advantages of a nanosize effect, high specific
surface area, and high porosity over other reported materials used
for physical sensors. In this review, the working principles of various
physical sensors including pressure sensors, strain sensors, temperature
sensors, and humidity sensors are first introduced; recent research
progress of electrospun nanofiber-based physical sensors is then summarized.
Finally, future research trends and associated challenges of large-scale
adoption of electrospun physical sensors are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.