Underwater acoustic target recognition (UATR) technology has been implemented widely in the fields of marine biodiversity detection, marine search and rescue, and seabed mapping, providing an essential basis for human marine economic and military activities. With the rapid development of machine-learning-based technology in the acoustics field, these methods receive wide attention and display a potential impact on UATR problems. This paper reviews current UATR methods based on machine learning. We focus mostly, but not solely, on the recognition of target-radiated noise from passive sonar. First, we provide an overview of the underwater acoustic acquisition and recognition process and briefly introduce the classical acoustic signal feature extraction methods. In this paper, recognition methods for UATR are classified based on the machine learning algorithms used as UATR technologies using statistical learning methods, UATR methods based on deep learning models, and transfer learning and data augmentation technologies for UATR. Finally, the challenges of UATR based on the machine learning method are summarized and directions for UATR development in the future are put forward.
Based on examination of herbarium specimens (including types) and living plants, as well as analysis of protologues and distributions, Parnassia tibetana, P. nubicola subsp. occidentalis, and P. nubicola var. nana are reduced to synonyms of P. nubicola.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.