This paper presents the system submitted by University of Wolverhampton for SemEval-2014 task 1. We proposed a machine learning approach which is based on features extracted using Typed Dependencies, Paraphrasing, Machine Translation evaluation metrics, Quality Estimation metrics and Corpus Pattern Analysis. Our system performed satisfactorily and obtained 0.711 Pearson correlation for the semantic relatedness task and 78.52% accuracy for the textual entailment task.
This paper describes the system submitted by the University of Wolverhampton and the University of Malaga for SemEval-2015 Task 2: Semantic Textual Similarity. The system uses a Supported Vector Machine approach based on a number of linguistically motivated features. Our system performed satisfactorily for English and obtained a mean 0.7216 Pearson correlation. However, it performed less adequately for Spanish, obtaining only a mean 0.5158.
Post-Editing of Machine Translation (MT) has become a reality in professional translation workflows. In order to optimize the management of projects that use post-editing and avoid underpayments and mistrust from professional translators, effective tools to assess the quality of Machine Translation (MT) systems need to be put in place. One field of study that could address this problem is Machine Translation Quality Estimation (MTQE), which aims to determine the quality of MT without an existing reference. Accurate and reliable MTQE can help project managers and translators alike, as it would allow estimating more precisely the cost of post-editing projects in terms of time and adequate fares by discarding those segments that are not worth post-editing (PE) and have to be translated from scratch.In this paper, we report on the results of an impact study which engages professional translators in PE tasks using MTQE. We measured translators' productivity in different scenarios: translating from scratch, post-editing without using MTQE, and post-editing using MTQE. Our results show that QE information, when accurate, improves post-editing efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.