A long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (Salmo salar). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how higher reproductive success in local spawners compared to dispersers may act in natural populations to drive population divergence and promote local adaptation over microgeographic spatial scales without clear morphological differences between populations.
Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how environmental conditions shape responses to parasitism is important as environmental variability is predicted to increase.
Summary1. The age of the parents at the time of offspring production can influence offspring longevity, but the underlying mechanisms remain poorly understood. The effect of parental age on offspring telomere dynamics (length and loss rate) is one mechanism that could be important in this context. 2. Parental age might influence the telomere length that offspring inherit or age-related differences in the quality of parental care could influence the rate of offspring telomere loss. However, these routes have generally not been disentangled. 3. Here, we investigated whether parental age was related to offspring telomere dynamics using parents ranging in age from 2 to 22 years old in a free-living population of a long-lived seabird, the European shag (Phalacrocorax aristotelis). By measuring the telomere length of offspring at hatching and towards the end of the post-natal growth period, we could assess whether any potential parental age effect was confined to the post-natal rearing period. 4. There was no effect of maternal or paternal age on the initial telomere length of their chicks. However, chicks produced by older mothers and fathers experienced significantly greater telomere loss during the post-natal nestling growth period. We had relatively few nests in which the ages of both parents were known, and individuals in this population mate assortatively with respect to age. Thus, we could not conclusively determine whether the parental age effect was due to maternal age, paternal age, or both; however, it appears that the effect is stronger in mothers.5. These results demonstrate that in this species, there was no evidence that parental age was related to offspring hatching telomere length. However, telomere loss during nestling growth was reduced in the offspring of older parents. This could be due to an age-related deterioration in the quality of the environment that parents provide, or because parents that invest less in offspring rearing live to an older age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.