Differences among populations in the intensity of sexual selection resulting from distinct genetic mating systems can lead to divergent morphological evolution and speciation. However, little is known about how genetic mating systems vary between populations and what factors may contribute to this variation. In this study, we compare the genetic mating systems of two geographically distinct populations of the dusky pipefish (Syngnathus floridae), a species characterized by polygynandry and male pregnancy, from the Atlantic Coast of Virginia and the Gulf Coast of Florida. Our results revealed significant interpopulation variation in mating and reproductive success. Estimates of the opportunity for selection (I), the opportunity for sexual selection (I(s)) and the Bateman gradient (beta(ss)) were higher among males in the Florida population than in the Virginia population, suggesting that sexual selection on males is stronger in the Florida population. The Virginia population is larger and denser than the Florida population, suggesting that population demographics may be one of many causal factors shaping interpopulational mating patterns. This study also provides evidence that the adult sex ratio, operational sex ratio, population density and genetic mating system of S. floridae may be temporally stable over timescales of a month in the Florida population. Overall, our results show that this species is a good model for the study of mating system variation in nature and that Bateman's principles may be a useful technique for the quantitative comparison of mating systems between populations.
The operational sex ratio (OSR) and density are considered important factors affecting the strength of sexual selection. Although there is increasing evidence that OSR and density affect the potential for sexual selection, few studies have addressed whether this is realized in phenotypic selection and how the two factors interact. We manipulated OSR (three levels) and male density (two levels) in 36 experimental breeding populations of Gobiusculus flavescens-a fish with paternal care. We measured mating competition behavior, the opportunity for selection (I), and selection on four morphological traits in males. We found sexual selection on two male traits, with the strongest selection being 20% of I. As predicted from OSR theory, increasing female scarcity caused males to become more competitive, concomitant with an increase in I and selection on morphological traits. Model simulations of I based on random mating (I min ) and maximum mate monopolization (I max ) demonstrated that the potential for sexual selection was close to its theoretical maximum across the range of OSRs. However, male density and its interaction with the OSR did not affect sexual selection. We argue that a multifaceted approach, combining mating behavior and selection analyses, can help us to understand how ecological factors affect sexual selection.
A long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (Salmo salar). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how higher reproductive success in local spawners compared to dispersers may act in natural populations to drive population divergence and promote local adaptation over microgeographic spatial scales without clear morphological differences between populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.