Immobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for the enzymatic activity; however, less focus has been given to 20 the influence of the particle size. In this work the effect of particle size and particle morphology on the immobilization of lipase from Mucor miehei and Rhizopus oryzae have been investigated. Three kinds of mesoporous silica, all with 9 nm pores but with varying particle size (1000 nm, 300 nm and 40 nm) have been synthesized and were used as host for the lipases. The two lipases, which have the same molecular size but widely different 25 isoelectric points, were immobilized into the silica particles at varied pH values within the interval 5 to 8. The 300 nm particles were proven to be the most suitable carrier with respect to specific activity for both enzymes. The lipase from Mucor miehei was more than four times as active when immobilized at pH 8 compared to free in solution whereas the difference was less pronounced for the Rhizopus oryzae lipase. 30
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.