Ecosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems on a global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted by the United Nations Environment Programme established a task force to evaluate the state-of-the-science in modeling chemical exposure of organisms and the resulting ecotoxicological effects for use in LCIA. The outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice of exposure and effect modeling in ecotoxicity characterization. These changes will reflect the current science and ensure the stability of recommended practice. Recommendations must work within the needs of LCIA in terms of 1) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, 2) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and 3) yielding results that are additive across substances and life cycle stages and that will allow a quantitative expression of damage to the exposed ecosystem. We describe the current framework and discuss research questions identified in a roadmap. Primary research questions relate to the approach toward ecotoxicological effect assessment, the need to clarify the method's scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, we give metals a special focus, including consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts. Environ Toxicol Chem 2018;37:2955-2971. © 2018 SETAC.
Risk assessment (RA) and life cycle assessment (LCA) are two analytical tools used to support decision making in environmental management. This study reviewed 30 environmental assessment case studies that claimed an integration, combination, hybridization, or complementary use of RA and LCA. The focus of the analysis was on how the respective case studies evaluated emissions of chemical pollutants and pathogens. The analysis revealed three clusters of similar case studies. Yet, there seemed to be little consensus as to what should be referred to as RA and LCA, and when to speak of combination, integration, hybridization, or complementary use of RA and LCA. This paper provides clear recommendations toward a more stringent and consistent use of terminology. Blending elements of RA and LCA offers multifaceted opportunities to adapt a given environmental assessment case study to a specific decision making context, but also requires awareness of several implications and potential pitfalls, of which six are discussed in this paper. To facilitate a better understanding and more transparent communication of the nature of a given case study, this paper proposes a "design space" (i.e., identification framework) for environmental assessment case studies blending elements of RA and LCA. Thinking in terms of a common design space, we postulate, can increase clarity and transparency when communicating the design and results of a given assessment together with its potential strengths and weaknesses.
Purpose Life cycle assessments (LCAs) of textile products which do not include the use and emission of textile chemicals, such as dyes, softeners and water-repellent agents, will give non-comprehensive results for the toxicity impact potential. The purpose of this paper is twofold: (1) to provide a set of characterisation factors (CFs) for some of the most common textile chemicals and (2) to propose a data source selection strategy in order to increase transparency when calculating new CFs. Methods A set of 72 common textile-related substances was matched with the USEtox 2.01, USEtox 1.01 and the COSMEDE databases in order to investigate coverage and coherence. For the 25 chemicals that did not already have established CFs in any of these databases, new CFs were calculated. A data source selection strategy was developed and followed in order to ensure consistency and transparency, and USEtox 2.01 was used for calculations. The parameters that caused the most uncertainty were identified during the modelling and strategies for handling them were developed. Results and discussion Of the 72 textile-related substances, 48 already had calculated recommended or indicative CFs in existing databases, which showed good coherence. The main uncertainty identified during the calculation of 25 new CFs was the selection of input data regarding toxicity and degradation in water. However, for substances such as per-and polyfluoroalkyl substances (PFAS), the acid dissociation constant (pK a ) and partitioning coefficients (K ow and K OC ) also require special considerations. Other input parameters had less than one order of magnitude impact on the CF result for essentially all substances. Conclusions The paper presents a strategy for how to provide a complete set of toxicity CFs for a given list of substances. In addition, such a set of CFs for common textile-related substances is presented. The data source selection strategy provides a structured and transparent way of calculating additional CFs for textile chemicals with USEtox. Consequently, this study can help future LCA studies to provide relevant guidance towards environmentally benign chemical management in the textile industry.
A framework for characterizing per- and polyfluoroalkyl substances (PFASs) in life cycle impact assessment (LCIA) is proposed. Thousands of PFASs are used worldwide, with special properties imparted by the fluorinated alkyl chain. Our framework makes it possible to characterize a large part of the family of PFASs by introducing transformation fractions that translate emissions of primary emitted PFASs into the highly persistent terminal degradation products: the perfluoroalkyl acids (PFAAs). Using a PFAA-adapted characterization model, human toxicity as well as marine and freshwater aquatic ecotoxicity characterization factors are calculated for three PFAAs, namely perfluorooctanoic acid (PFOA) perfluorohexanoic acid (PFHxA) and perfluorobutanesulfonic acid (PFBS). The model is evaluated to adequately capture long-term fate, where PFAAs are predicted to accumulate in open oceans. The characterization factors of the three PFAAs are ranked among the top 5% for marine ecotoxicity, when compared to 3104 chemicals in the existing USEtox results databases. Uncertainty analysis indicates potential for equally high ranks for human health impacts. Data availability constitutes an important limitation creating uncertainties. Even so, a life cycle assessment (LCA) case study illustrates practical application of our proposed framework, demonstrating that even low emissions of PFASs can have large effects on LCA results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.