Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine single nucleotide polymorphisms (SNPs) associated with the extent of abdominal (AAC, n = 9,417) or descending thoracic (TAC, n = 8,422) aortic calcification. Two genetic loci, HDAC9 and RAP1GAP, were associated with AAC at a genome-wide level (P < 5.0 × 10 −8). No SNPs were associated with TAC at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells (HASMCs) promoted calcification and reduced contractility, while inhibition of HDAC9 in HASMCs inhibited calcification and enhanced cell contractility. In matrix Gla protein (MGP)deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a novel role for HDAC9 in the development of vascular calcification.
Objective— Inflammatory stimuli enhance the progression of atherosclerotic disease. Inflammation also increases the expression of hepcidin, a hormonal regulator of iron homeostasis, which decreases intestinal iron absorption, reduces serum iron levels and traps iron within macrophages. The role of macrophage iron in the development of atherosclerosis remains incompletely understood. The objective of this study was to investigate the effects of hepcidin deficiency and decreased macrophage iron on the development of atherosclerosis. Approach and Results— Hepcidin- and LDL (low-density lipoprotein) receptor-deficient ( Hamp −/− / Ldlr −/− ) mice and Hamp +/+ / Ldlr −/− control mice were fed a high-fat diet for 21 weeks. Compared with control mice, Hamp −/− / Ldlr −/− mice had decreased aortic macrophage activity and atherosclerosis. Because hepcidin deficiency is associated with both increased serum iron and decreased macrophage iron, the possibility that increased serum iron was responsible for decreased atherosclerosis in Hamp −/− / Ldlr −/− mice was considered. Hamp +/+ / Ldlr −/− mice were treated with iron dextran so as to produce a 2-fold increase in serum iron. Increased serum iron did not decrease atherosclerosis in Hamp +/+ / Ldlr −/− mice. Aortic macrophages from Hamp −/− / Ldlr −/− mice had less labile free iron and exhibited a reduced proinflammatory (M1) phenotype compared with macrophages from Hamp +/+ / Ldlr −/− mice. THP1 human macrophages treated with an iron chelator were used to model hepcidin deficiency in vitro. Treatment with an iron chelator reduced LPS (lipopolysaccharide)-induced M1 phenotypic expression and decreased uptake of oxidized LDL. Conclusions— In summary, in a hyperlipidemic mouse model, hepcidin deficiency was associated with decreased macrophage iron, a reduced aortic macrophage inflammatory phenotype and protection from atherosclerosis. The results indicate that decreasing hepcidin activity, with the resulting decrease in macrophage iron, may prove to be a novel strategy for the treatment of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.