The revised 2017 European LeukemiaNet (ELN) recommendations for genetic risk stratification of acute myeloid leukemia have been widely adopted, but have not yet been validated in large cohorts of AML patients. We studied 1116 newly diagnosed AML patients (age range, 18-86 years) who had received induction chemotherapy. Among 771 patients not selected by genetics, the ELN-2017 classification reassigned 26.5% of patients into a more favorable or, more commonly, a more adverse-risk group compared with the ELN-2010 recommendations. Forty percent of the cohort, and 51% of patients ≥60 years, were classified as adverse-risk by ELN-2017. In 599 patients <60 years, estimated 5-year overall survival (OS) was 64% for ELN-2017 favorable, 42% for intermediate-risk and 20% for adverse-risk patients. Among 517 patients aged ≥60 years, corresponding 5-year OS rates were 37, 16, and 6%. Patients with biallelic CEBPA mutations or inv(16) had particularly favorable outcomes, while patients with mutated TP53 and a complex karyotype had especially poor prognosis. DNMT3A mutations associated with inferior OS within each ELN-2017 risk group. Our results validate the prognostic significance of the revised ELN-2017 risk classification in AML patients receiving induction chemotherapy across a broad age range. Further refinement of the ELN-2017 risk classification is possible.
A cute myeloid leukemia is a disease of the elderly (median age at diagnosis, 65–70 years). The prognosis of older acute myeloid leukemia patients is generally poor. While genetic markers have become important tools for risk stratification and treatment selection in young and middle-aged patients, their applicability in very old patients is less clear. We sought to validate existing genetic risk classification systems and identify additional factors associated with outcomes in intensively treated patients aged ≥75 years. In 151 patients who received induction chemotherapy in the AMLCG-1999 trial, we investigated recurrently mutated genes using a targeted sequencing assay covering 64 genes. The median number of mutated genes per patient was four. The most commonly mutated genes were TET2 (42%), DNMT3A (35%), NPM1 (32%), SRSF2 (25%) and ASXL1 (21%). The complete remission rate was 44% and the 3-year survival was 21% for the entire cohort. While adverse-risk cytogenetics (MRC classification) were associated with shorter overall survival (P=0.001), NPM1 and FLT3-ITD mutations (present in 18%) did not have a significant impact on overall survival. Notably, none of the 13 IDH1-mutated patients (9%) reached complete remission. Consequently, the overall survival of this subgroup was significantly shorter than that of IDH1-wildtype patients (P<0.001). In summary, even among very old, intensively treated, acute myeloid leukemia patients, adverse-risk cytogenetics predict inferior survival. The spectrum and relevance of driver gene mutations in elderly patients differs from that in younger patients. Our data implicate IDH1 mutations as a novel marker for chemorefractory disease and inferior prognosis. (AMLCG-1999 trial: clinicaltrials.gov identifier, NCT00266136)
About 30% of patients with acute myeloid leukemia (AML) harbour mutations of the receptor tyrosine kinase FLT3, mostly internal tandem duplications (ITD) and point mutations of the second tyrosine kinase domain (TKD). It was the aim of this study to comprehensively analyze clinical and functional properties of various FLT3 mutants.In 672 normal karyotype AML patients FLT3-ITD, but not FLT3-TKD mutations were associated with a worse relapse free and overall survival in multivariate analysis. In paired diagnosis-relapse samples FLT3-ITD showed higher stability (70%) compared to FLT3-TKD (30%). In vitro, FLT3-ITD induced a strong activating phenotype in Ba/F3 cells. In contrast, FLT3-TKD mutations and other point mutations – including two novel mutations – showed a weaker but clear gain-of-function phenotype with gradual increase in proliferation and protection from apoptosis. The pro-proliferative capacity of the investigated FLT3 mutants was associated with cell surface expression and tyrosine 591 phosphorylation of the FLT3 receptor. Western blot experiments revealed STAT5 activation only in FLT3-ITD positive cell lines, in contrast to FLT3-non-ITD mutants, which displayed an enhanced signal of AKT and MAPK activation. Gene expression analysis revealed distinct difference between FLT3-ITD and FLT3-TKD for STAT5 target gene expression as well as deregulation of SOCS2, ENPP2, PRUNE2 and ART3. FLT3-ITD and FLT3 point mutations show a gain-of-function phenotype with distinct signalling properties in vitro. Although poor prognosis in AML is only associated with FLT3-ITD, all activating FLT3 mutations can contribute to leukemogenesis and are thus potential targets for therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.