Context: Development of software-intensive products and services increasingly occurs by continuously deploying product or service increments, such as new features and enhancements, to customers. Product and service developers must continuously find out what customers want by direct customer feedback and usage behaviour observation. Objective: This paper examines the preconditions for setting up an experimentation system for continuous customer experiments. It describes the RIGHT model for Continuous Experimentation (Rapid Iterative value creation Gained through High-frequency Testing), illustrating the building blocks required for such a system. Method: An initial model for continuous experimentation is analytically derived from prior work. The model is matched against empirical case study findings from two startup companies and further developed. Results: Building blocks for a continuous experimentation system and infrastructure are presented. Conclusions: A suitable experimentation system requires at least the ability to release minimum viable products or features with suitable instrumentation, design and manage experiment plans, link experiment results with a product roadmap, and manage a flexible business strategy. The main challenges are proper, rapid design of experiments, advanced instrumentation of software to collect, analyse, and store relevant data, and the integration of experiment results in both the product development cycle and the software development process.
Development of software-intensive products and services increasingly occurs by continuously deploying product or service increments, such as new features and enhancements, to customers. Product and service developers need to continuously find out what customers want by direct customer feedback and observation of usage behaviour, rather than indirectly through up-front business analyses. This paper examines the preconditions for setting up an experimentation system for continuous customer experiments. It describes the building blocks required for such a system. An initial model for continuous experimentation is analytically derived from prior work. The model is then matched against empirical case study findings from a startup company and adjusted. Building blocks for a continuous experimentation system and infrastructure are presented. A suitable experimentation system requires at least the ability to release minimum viable products or features with suitable instrumentation, design and manage experiment plans, link experiment results with a product roadmap, and manage a flexible business strategy. The main challenges are proper and rapid design of experiments, advanced instrumentation of software to collect, analyse, and store relevant data, and the integration of experiment results in both the product development cycle and the software development process.
This article examines organization and governance of commercially influenced Open Source Software development communities by presenting a multiple-case study of six contemporary, hybrid OSS projects. The findings provide in-depth understanding on how to design the participatory nature of the software development process, while understanding the factors that influence the delicate balance of openness, motivations, and governance. The results lay ground for further research on how to organize and manage developer communities where needs of the stakeholders are competing, yet complementary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.