Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B#g (B#g) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b#g plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b#g cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b#g mutant shows constitutive activation of both salicylic acid-and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b#g leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b#g leaves. We suggest that the specific B#g subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.
Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.