Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (R) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the R value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for R values estimated in laboratory conditions.
Ionic liquids (ILs) are new-generation, non-volatile solvents which are designable, and their structure may be specifically adjusted to the current application needs. Therefore, it is possible to create and apply ILs which efficiently and selectively extract various analytes from different matrices. It has already been examined that ILs may be applied as receiving phases in passive sampling for the long-term water monitoring of PAHs and pharmaceuticals in water. In this paper, the concept of passive sampling with ILs (PASSIL applied as receiving phases) was continued and developed using phosphonium-, imidazolium-, and morpholinium-cation-based ILs. The target group of analytes was pharmaceuticals which represent one of the most common categories of water contaminants. Fourteen-day-long extractions using various ILs were performed in stirred conditions at a constant temperature (20 °C). The best extraction efficiency was achieved for trihexyl(tetradecyl)phosphonium dicyanamide ([P666-14][N(CN)2]). For this preliminary calibration, the sampling rates were calculated for each sulfonamide. Once again, selectivity was observed in passive sampling using [P666-14][N(CN)2]. Therefore, PASSIL is seen as a very promising method for pharmaceutical monitoring in water.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-017-0342-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.