Running is the basic mode of fast locomotion for legged animals. One of the most successful mathematical descriptions of this gait is the so-called spring–mass model constructed upon an inverted elastic pendulum. In the description of the grounded phase of the step, an interesting boundary value problem arises where one has to determine the leg stiffness. In this paper, we find asymptotic expansions of the stiffness. These are conducted perturbatively: once with respect to small angles of attack, and once for large velocities. Our findings are in agreement with previous results and numerical simulations. In particular, we show that the leg stiffness is inversely proportional to the square of the attack angle for its small values, and proportional to the velocity for large speeds. We give exact asymptotic formulas to several orders and conclude the paper with a numerical verification.
In this work we prove that a family of explicit numerical finite-difference methods is convergent when applied to a nonlinear Volterra equation with a power-type nonlinearity. In that case the kernel is not of Lipschitz type, therefore the classical analysis cannot be applied. We indicate several difficulties that arise in the proofs and show how they can be remedied. The tools that we use consist of variations on discreet Gronwall's lemmas and comparison theorems. Additionally, we give an upper bound on the convergence order. We conclude the paper with a construction of a convergent method and apply it for solving some examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.