Optimal immunological homoeostasis determines the long-term recovery of patients in the postoperative period. The functional adaptability of monocytes plays a pivotal role in adjusting the host's response to an insult, immunostasis and long-term health, and may help to determine successful recovery. We undertook a longitudinal analysis of the functional adaptability of monocytes in 20 patients undergoing heart surgery with cardiopulmonary bypass, as a model of severe stress. Using each patient's pre-cardiopulmonary bypass data as a baseline, we investigated the characteristics of peripheral blood monocytes' functional plasticity in-vitro before elective bypass, and three months afterwards. Approximately 30% of subjects showed diminished monocyte plasticity, as demonstrated by decreased monocyte differentiation into dendritic cells three months after bypass. Diminished monocyte functional plasticity was related to over-production of macrophage colony-stimulating factor. Adding a neutralising antibody to macrophage colony-stimulating factor corrected the monocytes' differentiation defect. Finally, patients with reduced monocyte plasticity had significantly elevated serum C-reactive protein, with a concomitant increase in cytomegalovirus IgG antibody titres, suggestive of the acquisition of immuno-suppressive traits. Our study shows that severe surgical stress resulted in a lasting immunological defect in individuals who had seemingly recovered.
According to the Hippocrates’ theorem “Let food be your medicine and medicine be your food”, dietary interventions may induce changes in the metabolic and inflammatory state by modulating the expression of important genes involved in the chronic disorders. The aim of the present study was to evaluate the influence of long-term (14 months) use of biologically active substances-enriched diet (BASE-diet) on transcriptomic profile of rats’ liver. The experiment was conducted on 36 Sprague–Dawley rats divided into two experimental groups (fed with control or BASE-diet, both n = 18). Control diet was a semi-synthetic diet formulated according to the nutritional requirements for laboratory animals. The BASE-diet was enriched with a mixture of polyphenolic compounds, β-carotene, probiotics, and n-3 and n-6 polyunsaturated fatty acids. In total, n = 3,017 differentially expressed (DE) genes were identified, including n = 218 DE genes between control and BASE groups after 3 months of feeding and n = 1,262 after 14 months. BASE-diet influenced the expression of genes involved particularly in the gonadotrope cell activation pathway and guanylate cyclase pathway, as well as in mast cell activation, gap junction regulation, melanogenesis and apoptosis. Especially genes involved in regulation of GnRH were strongly affected by BASE-diet. This effect was stronger with the age of animals and the length of diet use. It may suggest a link between the diet, reproductive system function and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.