Optimal immunological homoeostasis determines the long-term recovery of patients in the postoperative period. The functional adaptability of monocytes plays a pivotal role in adjusting the host's response to an insult, immunostasis and long-term health, and may help to determine successful recovery. We undertook a longitudinal analysis of the functional adaptability of monocytes in 20 patients undergoing heart surgery with cardiopulmonary bypass, as a model of severe stress. Using each patient's pre-cardiopulmonary bypass data as a baseline, we investigated the characteristics of peripheral blood monocytes' functional plasticity in-vitro before elective bypass, and three months afterwards. Approximately 30% of subjects showed diminished monocyte plasticity, as demonstrated by decreased monocyte differentiation into dendritic cells three months after bypass. Diminished monocyte functional plasticity was related to over-production of macrophage colony-stimulating factor. Adding a neutralising antibody to macrophage colony-stimulating factor corrected the monocytes' differentiation defect. Finally, patients with reduced monocyte plasticity had significantly elevated serum C-reactive protein, with a concomitant increase in cytomegalovirus IgG antibody titres, suggestive of the acquisition of immuno-suppressive traits. Our study shows that severe surgical stress resulted in a lasting immunological defect in individuals who had seemingly recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.