The structure and properties of vacuum-arc multi-period composite coatings of the MeN/Cu system (where Me is Cr, Zr, and Nb) are studied. It was found that at the smallest nanolayer thickness (about 8…10 nm) of composites in the layers of all systems, only a phase with an fcc lattice is formed, without a pronounced texture in the nitride layers. For ZrN and CrN, the phases with an fcc lattice are equilibrium, and for NbN, they are nonequilibrium. An increase in the thickness of nitride layers leads to the appearance of a texture in ZrN/Cu and CrN/Cu systems and the formation of an equilibrium ε-NbN phase in the layers of the NbN/Cu system. Tests for corrosion resistance in the environment of the formation of chloride ions showed that the coatings are anodic reaction. The best corrosion properties were obtained for coatings with the smallest layer thickness (about 8…10 nm).
Effect of pressure of the reaction gas on the texture, structural stress state and mechanical properties (hardness and resistance to abrasive wear) in vacuum-arc coatings based on Ti-V-Zr-Nb-Hf-Ta nitrides of high entropy alloys were investigated in this work. At a bias potential of -200V, an increase in nitrogen pressure during deposition from 2.5•10 -4 to 4.5•10 -3 Torr leads to an increase in the content of nitrogen atoms in the coating, and the formation of a bittexture state [111] + [311] is established. The formation of a biaxial texture occurs due to the presence in alloys of atoms with very different masses (Ti, V and Hf, Ta). The use of a multi-element composition in a single-phase state with a simple cubic lattice allows to achieve high values of microstrain (up to 1.4 %) with a low deposition pressure. It is determined that the increase of nitrogen pressure during deposition leads to an increase in macrostresses. The highest hardness of 53 GPa is achieved in coatings obtained at a pressure of 2•10 -3 Torr. It has been established that coatings with high resistance to abrasive wear are found to be: crystallite grain size 12-25 nm, absent of texture (or a low level of texture perfection), and also rather high microstrain in crystallites.
The influence of deposition modes on the phase-structural state, corrosion resistance, and adhesive strength of vacuum-arc multi-period NbN/Cu coatings is studied. It was found that in thin layers (about 8 nm, in a constant rotation mode), regardless of the change in the pressure of the nitrogen atmosphere, a metastable δ - NbN phase forms (cubic crystal lattice of the NaCl type). At a layer thickness of ~ 40 nm or more, a phase composition changes from the metastable δ - NbN to the equilibrium ε - NbN phase with a hexagonal crystal lattice. In the presence of the ε - NbN phase in the niobium nitride layers, the highest adhesive strength is achieved with a value of LС5 = 96.5 N. Corrosion resistance tests have shown that for all the studied samples the corrosion process has mainly an anodic reaction. The highest corrosion resistance was shown by coatings obtained at a pressure of 7·10-4 Torr, with the smallest bias potential of -50 V and the smallest layer thickness; with a thickness of such a coating of about 10 microns, its service life in the environment of the formation of chloride ions is about a year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.