The ability to recognize sounds allows humans and animals to efficiently detect behaviorally relevant events, even in the absence of visual information. Sound recognition in the human brain has been assumed to proceed through several functionally specialized areas, culminating in cortical modules where category-specific processing is carried out. In the present high-resolution fMRI experiment, we challenged this model by using well-controlled natural auditory stimuli and by employing an advanced analysis strategy based on an iterative machine-learning algorithm that allows modeling of spatially distributed, as well as localized, response patterns. Sounds of cats, female singers, acoustic guitars, and tones were controlled for their time-varying spectral characteristics and presented to subjects at three different pitch levels. Sound category information--not detectable with conventional contrast-based methods analysis--could be detected with multivoxel pattern analyses and attributed to spatially distributed areas over the supratemporal cortices. A more localized pattern was observed for processing of pitch laterally to primary auditory areas. Our findings indicate that distributed neuronal populations within the human auditory cortices, including areas conventionally associated with lower-level auditory processing, entail categorical representations of sounds beyond their physical properties.
We searched for a core mechanism underlying the diverse behavioural and sensorimotor deficits in dyslexic subjects. In psychophysical temporal order judgement and line motion illusion tasks, adult dyslexics processed stimuli in the left visual hemifield significantly (approximately 15 ms) more slowly than normal readers, indicating a left-sided 'minineglect'. Furthermore, abrupt stimuli captured attention in both visual hemifields less effectively in dyslexics than in normal readers. These abnormalities could reflect right parietal lobe hypofunction, a consequence of a general magnocellular deficit demonstrated previously. Based on these and previous data, we propose a causal chain which could result in several sensory and cognitive deficits observed in dyslexic subjects.
It is often implicitly assumed that the neural activation patterns revealed by hemodynamic methods, such as functional magnetic resonance imaging (fMRI), and electrophysiological methods, such as magnetoencephalography (MEG) and electroencephalography (EEG), are comparable. In early sensory processing that seems to be the case, but the assumption may not be correct in high-level cognitive tasks. For example, MEG and fMRI literature of single-word reading suggests differences in cortical activation, but direct comparisons are lacking. Here, while the same human participants performed the same reading task, analysis of MEG evoked responses and fMRI blood oxygenation level-dependent (BOLD) signals revealed marked functional and spatial differences in several cortical areas outside the visual cortex. Divergent patterns of activation were observed in the frontal and temporal cortex, in accordance with previous separate MEG and fMRI studies of reading. Furthermore, opposite stimulus effects in the MEG and fMRI measures were detected in the left occipitotemporal cortex: MEG evoked responses were stronger to letter than symbol strings, whereas the fMRI BOLD signal was stronger to symbol than letter strings. The EEG recorded simultaneously during MEG and fMRI did not indicate neurophysiological differences that could explain the observed functional discrepancies between the MEG and fMRI results. Acknowledgment of the complementary nature of hemodynamic and electrophysiological measures, as reported here in a cognitive task using evoked response analysis in MEG and BOLD signal analysis in fMRI, represents an essential step toward an informed use of multimodal imaging that reaches beyond mere combination of location and timing of neural activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.