The goal of PASTA project (acronym for production with accelerator of 47 Sc for theranostic applications) is the determination of excitation functions associated to several nuclear reactions, aimed at yielding the theranostic radionuclide 47 Sc. This work reports the main results obtained by irradiating natural vanadium targets with proton beams up to 70 MeV. Particular care is also given to the co-production of 46 Sc, the only isotopic contaminant with half-life longer than 47 Sc. Experimental results are compared with theoretical studies by means of known nuclear reaction software tools that are publicly available.
Technetium-99m (99mTc) is the most used radionuclide worldwide in nuclear medicine for diagnostic imaging procedures. 99mTc is typically extracted from portable generators containing 99Mo, which is produced normally in nuclear reactors as a fission product of highly enriched Uranium material. Due to unexpected outages or planned and unplanned reactor shutdown, significant 99mTc shortages appeared as a problem since 2008 The alternative cyclotron-based approach through the 100Mo(p,2n)99mTc reaction is considered one of the most promising routes for direct 99mTc production in order to mitigate potential 99Mo shortages. The design and manufacturing of appropriate cyclotron targets for the production of significant amounts of a radiopharmaceutical for medical use is a technological challenge. In this work, a novel solid target preparation method was developed, including sputter deposition of a dense, adherent, and non-oxidized Mo target material onto a complex backing plate. The latter included either chemically resistant sapphire or synthetic diamond brazed in vacuum conditions to copper. The target thermo-mechanical stability tests were performed under 15.6 MeV proton energy and different beam intensities, up to the maximum provided by the available GE Healthcare (Chicago, IL, USA) PET trace medical cyclotron. The targets resisted proton beam currents up to 60 µA (corresponding to a heat power density of about 1 kW/cm2) without damage or Mo deposited layer delamination. The chemical stability of the proposed backing materials was proven by gamma-spectroscopy analysis of the solution obtained after the standard dissolution procedure of irradiated targets in H2O2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.