The processes of the deposition of carbon coatings on PDMS (polydimethylsiloxane) substrates using plasma techniques are widely used in a large number of studies, in applications ranging from electronic to biological. That is why the potential improvement of their functional properties, including tribological properties, seems very interesting. This paper presents an analysis of the impact of plasma pre-treatment on the properties of the produced diamond-like carbon (DLC) coatings, including changes in the coefficients of friction and wear rates. The initial modification processes were performed using two different techniques based on low-pressure plasma (RF PACVD, radio-frequency plasma-assisted chemical vapour deposition) and dielectric barrier discharge (DBD) plasma. The effects of the above-mentioned treatments on the geometric structure of the PDMS surface and its water contact angles and stability over time were determined. The basic properties of the DLC coatings produced on unmodified substrates were compared to those of the coatings subjected to plasma pre-treatment. The most interesting effects in terms of tribological properties were achieved after the DBD process and production of DLC coatings, achieving a decrease in wear rates to 2.45 × 10−8 mm3/Nm. The tests demonstrate that the cross-linking of the polymer substrate occurs during plasma pre-treatment.
Bottom-up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal-ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin-based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating new noncentrosymmetric chiral Ln 3 + materials Ln 2 (SeO 3 ) 2 (SO 4 )(H 2 O) 2 (Ln=Sm, Dy, Yb) by mixed-ligand design. The materials exhibit phase-matching nonlinear optical responses, elucidating the feasibility of the heteroanionic strategy. Ln 2 (SeO 3 ) 2 -(SO 4 )(H 2 O) 2 displays paramagnetic property with strong magnetic anisotropy facilitated by large spin-orbit coupling. This study demonstrates a new chemical pathway for creating previously unknown polar chiral magnets with multiple functionalities.
Bottom‐up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal‐ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin‐based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating new noncentrosymmetric chiral Ln3+ materials Ln2(SeO3)2(SO4)(H2O)2 (Ln=Sm, Dy, Yb) by mixed‐ligand design. The materials exhibit phase‐matching nonlinear optical responses, elucidating the feasibility of the heteroanionic strategy. Ln2(SeO3)2(SO4)(H2O)2 displays paramagnetic property with strong magnetic anisotropy facilitated by large spin‐orbit coupling. This study demonstrates a new chemical pathway for creating previously unknown polar chiral magnets with multiple functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.