The lab-on-a-chip (LOC) field has witnessed an excess of new technology concepts, especially for the point-of-care (POC) applications. However, only few concepts reached the POC market often because of challenging integration with pumping and detection systems as well as with complex biological assays. Recently, a new technology termed SIMPLE was introduced as a promising POC platform due to its features of being self-powered, autonomous in liquid manipulations, cost-effective and amenable to mass production. In this paper, we improved the SIMPLE design and fabrication and demonstrated for the first time that the SIMPLE platform can be successfully integrated with biological assays by quantifying creatinine, biomarker for chronic kidney disease, in plasma samples. To validate the robustness of the SIMPLE technology, we integrated a SIMPLE-based microfluidic cartridge with colorimetric read-out system into the benchtop Creasensor. This allowed us to perform on-field validation of the Creasensor in a single-blind study with 16 plasma samples, showing excellent agreement between measured and spiked creatinine concentrations (ICC: 0.97). Moreover, the range of clinically relevant concentrations (0.76-20 mg/dL), the sample volume (5 μL) and time-to-result of only 5 min matched the Creasensor performance with both lab based and POC benchmark technologies. This study demonstrated for the first time outstanding robustness of the SIMPLE in supporting the implementation of biological assays. The SIMPLE flexibility in liquid manipulation and compatibility with different sample matrices opens up numerous opportunities for implementing more complex assays and expanding its POC applications portfolio.
Cell-based regenerative constructs provide hope for the restoration of tissue function in compromised biological conditions such as complex bone defects. A strategy mimicking the cascade of events of postnatal fracture healing suggests an implant design where progenitor cells provide the driving force for the construct's tissue forming capacity, while framing biomaterials provide cells with 3D cues to direct cellular processes. Large bone defects mainly heal through the formation of an intermediate endochondral fracture callus. The authors aimed to develop an in vitro engineered fracture callus manufactured by bioprinting to provide a spatially organized tissue construct based on: i) in vitro 3D primed human periosteum derived cells and ii) biocompatible thiolene alginate hydrogels, mimicking the cells and extracellular matrix present in the different zones of the callus. Cell viability and maintained osteochondrogenic differentiation upon bioprinting is confirmed in vitro. In vivo assessment displays that the developed biomaterials provided essential 3D cues that further guided the cells in their tissue forming process in the absence of additional stimulatory molecules. The reported findings confirm the appeal of a biomimetic approach to steer tissue development of in vitro engineered constructs and illustrate the suitability of bioprinting methodologies for the fabrication of living regenerative implants.
Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin- hyaluronan dialdehyde Schiff’s polymer (Gel-HDA), and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 ⁰C) compared to gold standard GelMA (27 ⁰C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 days of 3D in vitro culture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.
Articular cartilage defects have limited healing potential and, when left untreated, can lead to osteoarthritis. Tissue engineering focuses on regenerating the damaged joint surface, preferably in an early stage. Here, we investigate the regenerative potential of three-dimensional (3D) constructs consisting of human induced pluripotent stem cell (iPSC)-derived chondrocytes in gelatin methacryloyl (GelMA) hydrogel for stable hyaline cartilage production. iPSC-derived chondrocytes are encapsulated in GelMA hydrogel at low (1 × 10 7 ml −1 ) and high (2 × 10 7 ml −1 ) density.In a conventional medium, GelMA hydrogel supports the chondrocyte phenotype, as opposed to cells cultured in 3D in absence of hydrogel. Moreover, encapsulated iPSC-derived chondrocytes preserve their in vivo matrix formation capacity after 21 days in vitro. In differentiation medium, hyaline cartilage-like tissue forms after 21 days, demonstrated by highly sulfated glycosaminoglycans and collagen type II.Matrix deposition is delayed at low encapsulation density, corroborating with lower transcript levels of COL2A1. An ectopic assay in nude mice demonstrates further maturation of the matrix deposited in vitro. Direct ectopic implantation of iPSCderived chondrocyte-laden GelMA, without in vitro priming, also generates hyaline cartilage-like tissue, albeit less mature. Since it is unclear what maturity upon implantation is desired for joint surface regeneration, this is an attractive technology to generate immature and more mature hyaline cartilage-like tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.