A series of para-oligophenylene mono-and dicarboxylic acids (R-(C 6 H 4 ) n COOH, n=1-3, R=H,COOH) was studied. Adsorbed on Au(111)/mica modified by an underpotential deposited bilayer of Ag, the self-assembled monolayers (SAMs) were analysed by near edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscopy. In all cases SAMs are formed with molecules adopting an upright orientation and anchored to the substrate by a carboxylate. Except benzoic acid, all SAMs could be imaged at molecular resolution, which revealed highly crystalline layers with a dense molecular packing. The structures of the SAMs are described by a rectangular (5×√3) unit cell for the prevailing phase of the monocarboxylic acids and an oblique (√93×√133) unit cell for the dicarboxylic acids, thus, evidencing a pronounced influence of the second COOH moiety on the SAM structure. Density functional theory calculations suggest that hydrogen bonding between the SAM terminating COOH moieties accounts for the difference. Contrasting other classes of SAMs, the systems studied here are determined by intermolecular interactions whereas molecule-substrate interactions play a secondary role. Thus, eliminating problems arising from the mismatch between the molecular and substrate lattices, coordinatively bonded carboxylic acids on silver should provide considerable flexibility in the design of SAM structures.
Self-assembled monolayers of biphenyl-3,4',5-tricarboxylic acid (BPTCA) on Au(111)/mica substrates modified by under-potential deposited layers of Cu and Ag were studied by scanning tunneling microscopy under ambient conditions as well as by synchrotron based Xray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy.BPTCA forms distinctly different layers on Ag and Cu due to a pronounced influence of the substrate on the balance of intermolecular and molecule-substrate interactions. On Cu a highly crystalline commensurate row structure is formed, described by a 6×√3 unit cell, a molecular tilt of 45-50° relative to the surface normal, and a bipodal bidentate adsorption geometry. In contrast, incommensurate row structures are formed on Ag which are characterized by significant waves and kinks, a monopodal bidentate adsorption geometry, and a tilt angle of 25-30°. While BPTCA parallels its smaller homologue, benzene-1,3,5-tricarboxylic acid, with regard to the substrate specific monopodal and bipodal adsorption geometries, the preparation conditions for the monolayer on Cu and the film structure on Ag are pronouncedly different. The results are discussed in terms of the steric requirements and molecular symmetry of BPTCA.3
Assembly of 1,3,5-benzenetribenzoic acid (H3BTB) from solution on Au substrates modified by underpotential deposited Ag and Cu layers was studied by near edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscopy. Adsorption of H3BTB on Cu resulted in disordered layers with sporadic occurrence of ordered molecular aggregates. In contrast, highly ordered layers were obtained on Ag which exhibit a pronounced row structure and involve a monopodal bidentate adsorption geometry of the molecules through carboxylate coordinating bonding. The row structure arises from π-stacking of the molecules and is accompanied by hydrogen bonding interactions between the COOH groups of adjacent rows. As a consequence of the geometry of the H3BTB molecule and the dominance of intermolecular over molecule-substrate interactions, the SAM forms an open structure featuring a grooved surface and nanotunnels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.