Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures. A pronounced polymorphism is observed, with the formation of distinctly different structures depending on preparation conditions. Besides hexagonal molecular arrangements, the occurrence of a honeycomb structure is particularly intriguing as such an open structure is unusual for SAMs consisting of upright-standing molecules. Advanced spectroscopic tools reveal an equivalent bonding of all carboxylic acid anchoring groups. Notably, density functional theory calculations predict a chiral arrangement of the molecules in the honeycomb network, which, surprisingly, is not apparent in experimental scanning tunneling microscopy (STM) images. This seeming discrepancy between theory and experiment can be resolved by considering the details of the actual electronic structure of the adsorbate layer. The presented results represent an exemplary showcase for the intricacy of interpreting STM images of complex molecular films. They are also further evidence for the potential of triptycenes as basic building blocks for generating well-defined layers with unusual structural motifs.
Assembly of 1,3,5-benzenetribenzoic acid (H3BTB) from solution on Au substrates modified by underpotential deposited Ag and Cu layers was studied by near edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscopy. Adsorption of H3BTB on Cu resulted in disordered layers with sporadic occurrence of ordered molecular aggregates. In contrast, highly ordered layers were obtained on Ag which exhibit a pronounced row structure and involve a monopodal bidentate adsorption geometry of the molecules through carboxylate coordinating bonding. The row structure arises from π-stacking of the molecules and is accompanied by hydrogen bonding interactions between the COOH groups of adjacent rows. As a consequence of the geometry of the H3BTB molecule and the dominance of intermolecular over molecule-substrate interactions, the SAM forms an open structure featuring a grooved surface and nanotunnels.
Peekaboo on the nanoscale: exposure to molecules of adamantanecarboxylic acid leaves a layer of benzenetricarboxylic acid seemingly unchanged.
The effects of low energy electrons on aromatic self-assembled monolayers (SAMs) with carboxylic acid (CA) docking groups were studied with focus on the dose range below 5 mC/cm 2 . The SAMs were prepared on underpotentially deposited Ag bilayer and comprised non-substituted and CA-substituted monolayers with the rod-like biphenyl backbone and a monolayer of a Y-shaped, CA-substituted molecule, 1,3,5-benzenetribenzoic acid (H3BTB), formed either as a single-component film or as a binary one by mixing with adamantane-CA (Ad-CA). X-ray photoelectron and near-edge X-ray absorption fine structure spectra suggest a high proneness of the CA groups at both the SAM/substrate and SAM/ambient interface to electron irradiation. Cleavage of the carboxylate-substrate bond results in a substantial molecular desorption at the initial stage of irradiation until electron-induced cross-linking gradually takes over. The CA groups at the outer SAM interface undergo substantial chemical changes indicating that they participate in the cross-linking chemistry. The electron-induced processes are accompanied by molecular reorientation. Disordering concluded for the SAMs formed by the rod-like molecules is contrasted by the H3BTB based systems where changes also occur but some molecular order is preserved as explained by a proposed model invoking conformational changes. In SAMs of H3BTB mixed with Ad-CA the latter shows a higher proneness to irradiation-induced desorption than the former as well as an influence on the cross-linking chemistry. The results of the present study suggest that CA-based SAMs on Ag offer additional options for cross-linking in SAMs and, as exemplarily demonstrated by the generation of Cu patterns on structured H3BTB templates, can be efficiently used for lithography and nanofabrication.
Monolayers of 4-(2,6-di(1 H-pyrazol-1-yl)pyridine-4-yl)benzoic acid (DPP-BA) on Au substrates modified by an underpotential-deposited bilayer of Ag were studied by X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy, and scanning tunneling microscopy. Highly crystalline layers are formed with molecules coordinatively bonding to the surface through the carboxylate moiety in a bidentate configuration. The molecules assemble to rows characterized by densely packed upright-orientated DPP units occupying an area of 41 Å. The DPP units adopt a trans-trans conformation as inferred from the N 1s XPS spectra taken at different photon energies. Their alignment alternates between adjacent rows, giving rise to a herringbone pattern. The pronouncedly different structure of the weakly commensurate self-assembled monolayer (SAM) of DPP-BA on Ag compared to the commensurate SAM of a DPP thiol on Au is a manifestation of the shift from substrate-directed assembly in the latter case to assembly dominated by intermolecular interactions in the former case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.