During immune challenge, T lymphocytes engage pathways of anabolic metabolism to support clonal expansion and the development of effector functions. Here we report a critical role for the non-essential amino acid serine in effector T cell responses. Upon activation, T cells upregulate enzymes of the serine, glycine, one-carbon (SGOC) metabolic network, and rapidly increase processing of serine into one-carbon metabolism. We show that extracellular serine is required for optimal T cell expansion even in glucose concentrations sufficient to support T cell activation, bioenergetics, and effector function. Restricting dietary serine impairs pathogen-driven expansion of T cells in vivo, without affecting overall immune cell homeostasis. Mechanistically, serine supplies glycine and one-carbon units for de novo nucleotide biosynthesis in proliferating T cells, and one-carbon units from formate can rescue T cells from serine deprivation. Our data implicate serine as a key immunometabolite that directly modulates adaptive immunity by controlling T cell proliferative capacity.
Dendritic cells (DCs) are first responders of the innate immune system that integrate signals from external stimuli to direct context-specific immune responses. Current models suggest that an active switch from mitochondrial metabolism to glycolysis accompanies DC activation to support the anabolic requirements of DC function. We show that early glycolytic activation is a common program for both strong and weak stimuli, but that weakly activated DCs lack long-term HIF-1α-dependent glycolytic reprogramming and retain mitochondrial oxidative metabolism. Early induction of glycolysis is associated with activation of AKT, TBK, and mTOR, and sustained activation of these pathways is associated with long-term glycolytic reprogramming. We show that inhibition of glycolysis impaired maintenance of elongated cell shape, DC motility, CCR7 oligomerization, and DC migration to draining lymph nodes. Together, our results indicate that early induction of glycolysis occurs independent of pro-inflammatory phenotype, and that glycolysis supports DC migratory ability regardless of mitochondrial bioenergetics.
As a result of an author oversight in the originally published version of this article, the Supplemental Information was published with two data tables missing. These missing tables have now been added to the Supplemental Information and appear with the article online. The authors apologize for the error and any inconvenience it may have caused.
Leishmania parasites have the ability to modify macrophage signaling pathways in order to survive and multiply within its mammalian host. They are also known to invade other cells including neutrophils, fibroblasts and dendritic cells (DCs). DCs have an important role in immunity as the link between innate and adaptive immunity, necessary for the development of an effective response; however, the impact of Leishmania mexicana infection on DCs has been poorly studied. Herein, we report that Leishmania infection rapidly induced DC protein tyrosine phosphatases activity, leading to MAP kinases inactivation. In line with this, L. mexicana was found to decrease the nuclear translocation of transcription factors such as AP-1 and NF-κB. Concomitantly, L. mexicana-infected DCs showed reduced expression of several surface antigen-presenting and co-stimulatory molecules upon LPS stimulation. Leishmania-induced interference on DC maturation was further reflected by their reduced capacity to present OVA antigen to OVA-specific T cells, as shown by abrogation of IL-2 production by the T cells. Collectively, our data revealed that DC infection by L. mexicana appears to affect the cellular and immunological mechanisms necessary for the development of an effective and protective immune response, therefore favouring the survival and propagation of the parasite within its host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.