Leishmania parasites have the ability to modify macrophage signaling pathways in order to survive and multiply within its mammalian host. They are also known to invade other cells including neutrophils, fibroblasts and dendritic cells (DCs). DCs have an important role in immunity as the link between innate and adaptive immunity, necessary for the development of an effective response; however, the impact of Leishmania mexicana infection on DCs has been poorly studied. Herein, we report that Leishmania infection rapidly induced DC protein tyrosine phosphatases activity, leading to MAP kinases inactivation. In line with this, L. mexicana was found to decrease the nuclear translocation of transcription factors such as AP-1 and NF-κB. Concomitantly, L. mexicana-infected DCs showed reduced expression of several surface antigen-presenting and co-stimulatory molecules upon LPS stimulation. Leishmania-induced interference on DC maturation was further reflected by their reduced capacity to present OVA antigen to OVA-specific T cells, as shown by abrogation of IL-2 production by the T cells. Collectively, our data revealed that DC infection by L. mexicana appears to affect the cellular and immunological mechanisms necessary for the development of an effective and protective immune response, therefore favouring the survival and propagation of the parasite within its host.
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.