Varroa mite-vectored viruses such as Deformed wing virus (DWV) are of great concern for honey bee health as they can cause disease in individuals and increase colony mortality. Two genotypes of DWV (A and B) are prevalent in the United States and may have differential virulence and pathogenicity. Honey bee genetic stocks bred to resist Varroa mites also exhibit differential infection responses to the Varroa mite-vectored viruses. The goal of this project was to determine if interactions between host genotype could influence the overall infection levels and dissemination of DWV within honey bees. To do this, we injected DWV isolated from symptomatic adult bees into mite-free, newly emerged adult bees from five genetic stocks with varying levels of resistance to Varroa mites. We measured DWV-A and DWV-B dissemination among tissues chosen based on relevance to general health outcomes for 10 days. Injury from sham injections did not increase DWV-A levels but did increase DWV-B infections. DWV injection increased both DWV-A and DWV-B levels over time with significant host stock interactions. While we did not observe any differences in viral dissemination among host stocks, we found differences in virus genotype dissemination to different body parts. DWV-A exhibited the highest initial levels in heads and legs while the highest initial levels of DWV-B were found in heads and abdomens. These interactions underscore the need to evaluate viral genotype and tissue specificity in conjunction with host genotype, particularly when the host has been selected for traits relative to virus-vector and virus resistance.
Ant–seed interactions take several forms, including dispersal, predation, and parasitism, whereby ants consume seed appendages without dispersal of seeds. We hypothesized that these interaction outcomes could be predicted by ant and plant traits and habitat, with outcomes falling along a gradient of cost and benefit to the plant. To test this hypothesis, we conducted a global literature review and classified over 6,000 pairs of ant–seed interactions from 753 studies across six continents. Linear models showed that seed and ant size, habitat, and dispersal syndrome were the most consistent predictors. Predation was less likely than parasitism and seed dispersal among myrmecochorous plants. A classification tree of the predicted outcomes from linear models revealed that dispersal and predation formed distinct categories based on habitat, ant size, and dispersal mode, with parasitism outcomes forming a distinct subgroup of predation based on seed size and shape. Multiple correspondence analysis indicated some combinations of ant genera and plant families were strongly associated with particular outcomes, whereas other ant–seed combinations were much more variable. Taken together, these results demonstrate that ant and plant traits are important overall predictors of potential seed fates in different habitat types.
Cultivar resistance is a key management strategy for the sugarcane borer, Diatraea saccharalis (F.), the primary pest in Louisiana sugarcane, but mechanisms of resistance are not well understood. This research evaluated the potential mechanisms of cultivar resistance to D. saccharalis among commercially produced sugarcane cultivars and experimental lines through three field screenings, two greenhouse experiments, and one diet incorporation assay. The resistant standards HoCP 85-845, HoCP 04-838, and L 01-299 were among the cultivars with the lowest D. saccharalis injury levels in both field and greenhouse trials. Cultivars HoCP 00-950 and L 12-201 were among the most heavily injured in both trials. Differences in oviposition among cultivars in the greenhouse choice study were not detected, suggesting adult preference is not a key factor in resistance. This was also supported by the no-choice greenhouse experiment in which up to 9-fold differences in neonate establishment among cultivars were detected. Larval injury among cultivars in greenhouse experiments was consistent with field studies suggesting traits that affect neonate establishment (e.g., rind hardness) help to confer resistance in the field. In the diet incorporation assay, lower larval weights and longer time to pupation were observed on resistant cultivar Ho 08-9003, but no differences were found among current commercial cultivars. Continuous evaluation of cultivar resistance to D. saccharalis is important in developing effective integrated pest management strategies for this pest. More research into plant characteristics (e.g., leaf sheath tightness and pubescence) associated with resistance is needed.
Agroecosystems undergo disturbance early in the season and host simple food webs that are often comprised of pests, generalist predators, and alternative prey. This is a critical time because predator: pest ratios are highest, in favor of predators, and most likely to affect the trajectory of pest populations, a concept we describe as early season predation. Conservation biological control of these pests utilizes on-farm management schemes to increase predator populations, in part, by providing or enhancing alternative resources. These resources may include beneficial alternative prey that sustains predators prior to pest arrival, but if predator affinity for these alternative prey is strong, pest suppression may be disrupted. Early in the season, when the abundance of pests is low compared to alternative prey, predators do not typically consume prey in direct proportion to their relative abundance, often feeding at disproportionately high rates on "rare" prey items. Therefore, molecular tools, such as gut content analysis, have been used to reveal trophic linkages and decouple the relationship between prey abundance and consumption. Using molecular techniques, numerous studies across different agroecosystems have determined that early season predation occurs regularly and may contribute to pest control and is probably most effective for pests with the potential for exponential population growth, where suppression early in the season may be essential to prevent these outbreaks. Studies incorporating molecular tools and field studies can provide insight for growers to create successful conservation biological control programs utilizing generalist predators in early season predation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.