Cricket fast bowlers are at a high risk of injury occurrence, and this has previously been shown to be correlated to bowling workloads. This study aimed to develop and test an algorithm that can automatically, reliably and accurately detect bowling deliveries. Inertial sensor data from a Catapult OptimEye S5 wearable device was collected from both national and international level fast bowlers (n=35) in both training and matches, at various intensities. A machine-learning based approach was used to develop the algorithm. Outputs were compared with over 20,000 manually recorded events. A high Matthews correlation coefficient (r=0.945) showed very good agreement between the automatically detected bowling deliveries and manually recorded ones. The algorithm was found to be both sensitive and specific in training (96.3%, 98.3%) and matches (99.6%, 96.9%), respectively. Rare falsely classified events were typically warm-up deliveries or throws preceded by a run. Inertial sensors data processed by a machine-learning based algorithm provide a valid tool to automatically detect bowling events, whilst also providing the opportunity to look at performance metrics associated with fast bowling. This offers the possibility to better monitor bowling workloads across a range of intensities to mitigate injury risk potential and maximise performance.
This study aimed to investigate the impact of COVID-19 enforced prolonged training disruption and shortened competitive season, on in-season injury and illness rates. Injury incidence and percent proportion was calculated for the 2020 elite senior men’s domestic cricket season and compared to a historical average from five previous regular seasons (2015 to 2019 inclusive). The injury profile for the shortened 2020 season was generally equivalent to what would be expected in a regular season, except for a significant increase in medical illness as a proportion of time loss (17% compared to historic average of 6%) and in-season days lost (9% compared to historic average of 3%) due to COVID-19 related instances (most notably precautionary isolation due to contact with a confirmed or suspected COVID-19 case). There was a significant increase in the proportion of in-season days lost to thigh injuries (24% compared to 9%) and a significant decrease in the proportion of days lost to hand (4% compared to 12%) and lumbar spine (7% compared to 21%) injuries. These findings enhance understanding of the impact prolonged period of training disruption and shortened season can have on cricket injuries and the challenges faced by practitioners under such circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.