Scientists are increasingly charged with solving complex societal, health, and environmental problems. These systemic problems require teams of expert scientists to tackle research questions through collaboration, coordination, creation of shared terminology, and complex social and intellectual processes. Despite the essential need for such interdisciplinary interactions, little research has examined the impact of scientific team support measures like training, facilitation, team building, and expertise. The literature is clear that solving complex problems requires more than contributory expertise, expertise required to contribute to a field or discipline. It also requires interactional expertise, socialised knowledge that includes socialisation into the practices of an expert group. These forms of expertise are often tacit and therefore difficult to access, and studies about how they are intertwined are nearly non-existent. Most of the published work in this area utilises archival data analysis, not individual team behaviour and assessment. This study addresses the call of numerous studies to use mixed-methods and social network analysis to investigate scientific team formation and success. This longitudinal case-based study evaluates the following question: How are scientific productivity, advice, and mentoring networks intertwined on a successful interdisciplinary scientific team? This study used applied social network surveys, participant observation, focus groups, interviews, and historical social network data to assess this specific team and assessed processes and practices to train new scientists over a 15-year period. Four major implications arose from our analysis: (1) interactional expertise and contributory expertise are intertwined in the process of scientific discovery; (2) team size and interdisciplinary knowledge effectively and efficiently train early career scientists; (3) integration of teaching/training, research/discovery, and extension/engagement enhances outcomes; and, (4) interdisciplinary scientific progress benefits significantly when interpersonal relationships among scientists from diverse disciplines are formed. This case-based study increases understanding of the development and processes of an exemplary team and provides valuable insights about interactions that enhance scientific expertise to train interdisciplinary scientists.
Multiple studies from the literature suggest that a high proportion of women on scientific teams contributes to successful team collaboration, but how the proportion of women impacts team success and why this is the case, is not well understood. One perspective suggests that having a high proportion of women matters because women tend to have greater social sensitivity and promote even turn-taking in meetings. Other studies have found women are more likely to collaborate and are more democratic. Both explanations suggest that women team members fundamentally change team functioning through the way they interact. Yet, most previous studies of gender on scientific teams have relied heavily on bibliometric data, which focuses on the prevalence of women team members rather than how they act and interact throughout the scientific process. In this study, we explore gender diversity in scientific teams using various types of relational data to investigate how women impact team interactions. This study focuses on 12 interdisciplinary university scientific teams that were part of an institutional team science program from 2015 to 2020 aimed at cultivating, integrating, and translating scientific expertise. The program included multiple forms of evaluation, including participant observation, focus groups, interviews, and surveys at multiple time points. Using social network analysis, this article tested five hypotheses about the role of women on university-based scientific teams. The hypotheses were based on three premises previously established in the literature. Our analyses revealed that only one of the five hypotheses regarding gender roles on teams was supported by our data. These findings suggest that scientific teams may create ingroups, when an underrepresented identity is included instead of excluded in the outgroup, for women in academia. This finding does not align with the current paradigm and the research on the impact of gender diversity on teams. Future research to determine if high-functioning scientific teams disrupt rather than reproduce existing hierarchies and gendered patterns of interactions could create an opportunity to accelerate the advancement of knowledge while promoting a just and equitable culture and profession.
Undergraduate capstone courses in sociology are designed to integrate students’ knowledge in the discipline and to culminate the classroom experience with field application. Are capstones achieving these goals in a durable way? Although the short-term outcomes of capstone courses have been researched, fewer studies have documented the long-term outcomes of capstone courses. We conducted a survey of sociology capstone alumni to understand the long-term outcomes of the sociology capstone by asking sociology alumni about their capstone experience. Our research revealed that all capstones produced long-term outcomes as measured in the alumni survey. Second, alumni of the community-based research capstone experienced a more profound and longer reaching effect than those who participated in the internship or traditional capstone seminar format. Alumni reported the development of professional skills, application of sociological concepts and research skills, and a sense of being part of a community.
Today’s societal challenges, such as climate change and global pandemics, are increasingly complex and require collaboration across scientific disciplines to address. Scientific teams bring together individuals of varying backgrounds and expertise to work collaboratively on creating new knowledge to address these challenges. Within a scientific team, there is inherent diversity in disciplinary cultures and preferences for interpersonal collaboration. Such diversity contributes to the potential strength of the created knowledge but can also impede progress when teams struggle to collaborate productively. Facilitation is a professional practice-based form of interpersonal expertise that supports group members to do their best thinking. Although facilitation has been demonstrated to support group functioning in a wide range of contexts, its role in supporting scientific teams has been largely overlooked. This essay defines scientific facilitation as a form of interactional expertise and explains how facilitating scientific teams requires skills in managing interpersonal interactions as well as understanding how different types of disciplinary knowledge integrate in the creation of new knowledge. Next, it explains how this science facilitation expertise may be developed through metacognition. Finally, it provides examples of how scientific facilitation could be more widely incorporated into research by describing three pathways to expand the use of facilitation theory and techniques in collaborative scientific research: developing facilitation skills among scientists leading teams, using broadly trained facilitators, and using specialised science facilitators. The strengths and risks of each path are discussed, and criteria are suggested for selecting the right approach for a given team science project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.