Background: The endocrine pancreas and hypothalamic-pituitary-adrenal axis (HPAA) are central to energy homeostasis, but information on their dynamics in response to energy challenges in healthy newborn foals is lacking. Objectives: To evaluate glucagon, insulin, ACTH, and cortisol response to fasting and carbohydrate administration in healthy foals. Animals: Twenty-two healthy Standardbred foals ≤4 days of age. Methods: Foals were assigned to fasted (n = 6), IV glucose (IVGT; n = 5), PO glucose (OGT; n = 5), and PO lactose (OLT; n = 6) test groups. Blood samples were collected frequently for 210 minutes. Nursing was allowed from 180 to 210 minutes. Plasma glucagon, ACTH, serum insulin, and cortisol concentrations were measured using immunoassays. Results: Plasma glucagon concentration decreased relative to baseline at 45, 90, and 180 minutes during the OLT (P = .03), but no differences occurred in other test groups. Nursing stimulated marked increases in plasma glucagon, serum insulin, and glucose concentrations in all test groups (P < .001). Plasma ACTH concentration increased relative to baseline at 180 minutes (P < .05) during fasting and OLT, but no differences occurred in other test groups. Serum cortisol concentration increased relative to baseline during OLT at 180 minutes (P = .04), but no differences occurred in other test groups. Nursing resulted in decreased plasma ACTH and serum cortisol concentrations in all test groups (P < .01). Conclusions and Clinical Importance: The endocrine response to enterally and parenterally administered carbohydrates, including the major endocrine response to nursing, suggests that factors in milk other than carbohydrates are strong stimulators (directly or indirectly) of the endocrine pancreas and HPAA.
The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· μIU-1 [13.4–28.4]) compared to horses (0.9 L·min-1· μIU-1 [0.5–1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103−14 × 103]) compared to horses (4 × 102 [2 × 102−7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 μIUinsulin2/10·L·mgglucose [1.43–2.68]) compared to horses (3.91 μIU insulin2/10·L·mgglucose [2.57–7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43–116]) compared to foals (23.2% [17.8–42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.
Most homeostatic systems in the equine neonate should be functional during the transition from intra- to extrauterine life to ensure survival during this critical period. Endocrine maturation in the equine fetus occurs at different stages, with a majority taking place a few days prior to parturition and continuing after birth. Cortisol and thyroid hormones are good examples of endocrine and tissue interdependency. Cortisol promotes skeletal, respiratory, cardiovascular, thyroid gland, adrenomedullary, and pancreatic differentiation. Thyroid hormones are essential for cardiovascular, respiratory, neurologic, skeletal, adrenal, and pancreatic function. Hormonal imbalances at crucial stages of development or in response to disease can be detrimental to the newborn foal. Other endocrine factors, including growth hormone, glucagon, catecholamines, ghrelin, adipokines (adiponectin, leptin), and incretins, are equally important in energy homeostasis. This review provides information specific to nutrition and endocrine systems involved in energy homeostasis in foals, enhancing our understanding of equine neonatal physiology and pathophysiology and our ability to interpret clinical and laboratory findings, therefore improving therapies and prognosis.
Equine ingesta-associated choledocholithiasis is a rare cause of morbidity and mortality. We describe here the clinical, gross, histologic, and microbiologic features of this condition in 2 horses and compare the features to 2 previous cases. Case 1 was a 4-y-old Thoroughbred mare with colic. Case 2 was an 18-y-old American Paint Horse mare with colic, chronic weight loss, and inappropriate mentation. Both had elevated biochemical markers of hepatocellular injury and cholestasis and were euthanized given a poor prognosis. Case 1 had a well-formed 5-cm choledocholith surrounding a piece of hay, and had chronic neutrophilic cholangiohepatitis, bridging fibrosis, and extrahepatic obstruction. Case 2 had an ill-formed choledocholith with occasional hay fragments, wood stick, and twigs, and had regionally extensive hepatocellular necrosis with mild neutrophilic cholangiohepatitis and bridging fibrosis. Enterococcus casseliflavus and Escherichia coli were isolated in both cases; Clostridium spp. were also isolated from case 2. All 4 reported cases had increased activity of cholestatic enzymes, hyperbilirubinemia, portal inflammation, and bridging fibrosis. Colic, pyrexia, leukocytosis with neutrophilia, and elevated hepatocellular enzyme activity were documented in 3 cases. Foreign material in all 4 cases was plant origin (choledochophytolithiasis), including hay ( n = 2), sticks/twigs ( n = 2), and grass awns ( n = 1). Ingesta-associated choledocholithiasis may be considered as a cause of colic, pyrexia, and elevated cholestatic biomarkers in horses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.