Cryptosporidiosis is an enteric infection caused by several protozoan species in the genus Cryptosporidium (phylum Apicomplexa). Immunosuppressed mice are commonly used to model this infection. Surprisingly, for a pathogen like Cryptosporidium parvum, which is readily transmitted fecal-orally, mice housed in the same cage can develop vastly different levels of infection, ranging from undetectable to lethal. The motivation for this study was to investigate this phenomenon and assess the association between the severity of cryptosporidiosis and the fecal microbiota. To this aim, the association between severity of cryptosporidiosis and caging (group caged vs. individually caged) and between the microbiota taxonomy and the course of the infection was examined. In contrast to mice caged in groups of four, a majority of mice caged individually did not excrete a detectable level of oocysts. Microbiota α diversity in samples collected between three days prior to infection and one day post-infection was negatively correlated with the severity of cryptosporidiosis, suggesting a causal negative relationship between microbiota diversity and susceptibility to C. parvum.
Endoparasitism is a major cause of morbidity and mortality in alpacas (Lama pacos), with growing emergence of anthelmintic resistance. The purpose of the study was to correlate nematode worm burden and selected host phenotypic characteristics, such as age and weight, with the composition of the intestinal microbiota of adult alpacas. Fecal samples were collected per rectum from 102 healthy adult (2.1–11.2 years) alpacas at 3 separate timepoints (pre- and post-treatment with 8.8 mg/kg oral Levamisole HCL, and 4.6 months later) at a single farm. The profile of the fecal bacterial microbiota was characterized using 16S amplicon sequencing. Serial clinical exams and fecal egg counts were compared using related-samples analyses. The fecal microbiota of identically managed, healthy alpacas was characterized by a high level of temporal stability, as both α and β-diversity significantly correlated between sampling timepoints. Pairwise β-diversity between samples collected at each timepoint was low, ranging from 0.16–0.21 UniFrac distance units. The intensity of strongylid nematode infection (including Haemonchus, Ostertagia, Trichostrongylus) was only significantly correlated with microbiota composition in samples collected 14 days after treatment with levamisole. Analysis of similarity revealed no clustering of microbiota from anthelmintic responders or non-responders. Alpaca age explained the largest proportion of fecal microbiota variation and was the only consistently significant predictor of fecal microbiota taxonomic composition, by impacting the ratio of relative Bacteroidetes and Firmicutes abundance. Firmicutes, mostly Clostridiales, was the most abundant taxon across all collections.
Herein, we describe the covalent attachment of resveratrol, a naturally occurring antioxidant, to the surface of stainless-steel as a model for designing a novel bare-metal stent to treat coronary artery disease. Resveratrol has been shown to reduce oxidative stress in dysfunctional endothelial cells, and stimulate arterial healing. Resveratrol treatments, however, are limited by low water solubility, such that a localized delivery to the site of arterial narrowing via a coated stent presents a promising strategy for improving stent outcomes. Our attachment strategy utilizes zirconium vapor deposition to lay down a thin layer of zirconium oxide with labile hydrocarbon groups at the surface. Resveratrol can displace these hydrocarbons in aprotic solvent to afford a covalently attached layer of resveratrol. We evaluated the release of resveratrol under a range of pH levels, including physiological conditions (pH = 7.4 and 37 C). Furthermore, we established that endothelial cells grown on a resveratrol-bound surface release elevated nitric oxide levels compared to controls, a key endothelial signaling molecule responsible for arterial health. These results are promising toward the development of a resveratrol-coated bare-metal stent to improve patient outcomes.
Flying pigeons (Columbia livia) are extensively studied for their physical endurance and superior sense of orientation. The extreme physical endurance of which these birds are capable creates a unique opportunity to investigate the possible impact of long-distance flying on the taxonomy and metabolic function of the gut microbiota. This project was enabled by access to two groups of pigeons raised by the same breeder in the same conditions, except that one group was trained in long-distance flying and participated in multiple races covering a total distance of over 2600 km over a 9-week period. In contrast, the second group did not fly. The fecal microbiota was analyzed using 16S amplicon sequencing, and the taxonomy and metabolic function were inferred from this sequence data. Based on phylogenetic distance and metabolic function, flying and non-flying pigeons were found to harbor distinct bacterial microbiota. The microbiota taxonomy varied extensively between the birds, whereas the inferred metabolic potential was relatively stable. Age was not a significant determinant of the fecal microbiota profile. In flying birds, the metabolic pathways annotated with biosynthesis were enriched, representing 60% of the 20 metabolic pathways that were most closely associated with flying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.