This article introduces a postmetallization "passivated edge technology" (PET) treatment for separated silicon solar cells consisting of aluminum oxide deposition with subsequent annealing. We present our work on bifacial shingle solar cells that are based on the passivated emitter and rear cell concept. To separate the shingle devices after metallization and firing, we use either a conventional laser scribing mechanical cleaving (LSMC) process or a thermal laser separation (TLS) process. Both separation processes show similar pseudo fill factor (pFF) drops of − 1.2% abs from the host wafer to the separated state. The pFF of the TLSseparated cells increases by up to +0.7% abs from the as-separated state after PET treatment due to edge passivation, while the pFF of LSMC-separated cells increases by up to +0.3% abs. On cell level, the combination of TLS and PET allows for a designated area output power density of p out = 23.5 mW/cm², taking into account an additional 10% rear side irradiance.
Combining the advantages of a high‐efficiency solar cell concept and a low carbon footprint base material is a promising approach for highly efficient, sustainable, and cost‐effective solar cells. In this work, we investigate the suitability of epitaxially grown p‐type silicon wafers for solar cells with tunnel oxide passivating contact rear emitter. As a first proof of principle, an efficiency limiting bulk recombination analysis of epitaxially grown p‐type silicon wafers deposited on high quality substrates (EpiRef) unveils promising cell efficiency potentials exceeding 25% for three different base resistivities of 3, 14, and 100 Ω cm. To understand the remaining limitations in detail, concentrations of metastable defects Fei, CrB and BO are assessed by lifetime‐calibrated photoluminescence imaging and their impact on the overall recombination is evaluated. The EpiRef wafers’ efficiency potential is tracked along the solar cell fabrication process to quantify the impact of high temperature treatments on the material quality. We observe large areas with few structural defects on the wafer featuring lifetimes exceeding 10 ms and an efficiency potential of 25.8% even after exposing the wafer to a thermal oxidation at 1050 °C.
The EU crystalline silicon (c‐Si) PV manufacturing industry has faced strong foreign competition in the last decade. To strive in this competitive environment and differentiate itself from the competition, the EU c‐Si PV manufacturing industry needs to (1) focus on highly performing c‐Si PV technologies, (2) include sustainability by design, and (3) develop differentiated PV module designs for a broad range of PV applications to tap into rapidly growing existing and new markets. This is precisely the aim of the 3.5 years long H2020 funded HighLite project, which started in October 2019 under the work program LC‐SC3‐RES‐15‐2019: Increase the competitiveness of the EU PV manufacturing industry. To achieve this goal, the HighLite project focuses on bringing two advanced PV module designs and the related manufacturing solutions to higher technology readiness levels (TRL). The first module design aims to combine the benefits of n‐type silicon heterojunction (SHJ) cells (high efficiency and bifaciality potential, improved sustainability, rapidly growing supply chain in the EU) with the ones of shingle assembly (higher packing density, improved modularity, and excellent aesthetics). The second module design is based on the assembly of low‐cost industrial interdigitated back‐contact (IBC) cells cut in half or smaller, which is interesting to improve module efficiencies and increase modularity (key for application in buildings, vehicles, etc.). This contribution provides an overview of the key results achieved so far by the HighLite project partners and discusses their relevance to help raise the EU PV industries' competitiveness. We report on promising high‐efficiency industrial cell results (24.1% SHJ cell with a shingle layout and 23.9% IBC cell with passivated contacts), novel approaches for high‐throughput laser cutting and edge re‐passivation, module designs for BAPV, BIPV, and VIPV applications passing extended testing, and first 1‐year outdoor monitoring results compared with benchmark products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.