Background
Pharmacological inhibition of membrane transporters is expected to reduce the flow of solutes, unless flux is restored (i.e., autoregulated) through a compensatory increase in the transmembrane driving force. Drugs acting on monocarboxylate transporters (MCTs) have been developed to disrupt glycolytic metabolism, but autoregulation would render such interventions ineffective. We evaluated whether small-molecule MCT inhibitors reduce cellular H+/lactate production.
Methods
Cellular assays measured the relationship between MCT activity (expressed as membrane H+/lactate permeability; PHLac) and lactic acid production (inferred from H+ and lactate excretion; JHLac) in a panel of pancreatic ductal adenocarcinoma (PDAC) cells spanning a range of glycolytic phenotype.
Results
MCT activity did not correlate with lactic acid production, indicating that it is not set by membrane permeability properties. MCT inhibitors did not proportionately reduce JHLac because of a compensatory increase in the transmembrane [lactate] driving force. JHLac was largely insensitive to [lactate], therefore its cytoplasmic build-up upon MCT inhibition does not hinder glycolytic production. Extracellular acidity, an MCT inhibitor, reduced JHLac but this was via cytoplasmic acidification blocking glycolytic enzymes.
Conclusions
We provide mathematically verified evidence that pharmacological and physiological modulators of MCTs cannot proportionately reduce lactic acid production because of the stabilising effect of autoregulation on overall flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.