Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis.
Multiple sclerosis is a chronic, often disabling, disease of the central nervous system affecting more than 1 in 1,000 people in most western countries. The inflammatory lesions typical of multiple sclerosis show autoimmune features and depend partly on genetic factors. Of these genetic factors, only the HLA gene complex has been repeatedly confirmed to be associated with multiple sclerosis, despite considerable efforts. Polymorphisms in a number of non-HLA genes have been reported to be associated with multiple sclerosis, but so far confirmation has been difficult. Here, we report compelling evidence that polymorphisms in IL7R, which encodes the interleukin 7 receptor alpha chain (IL7Ralpha), indeed contribute to the non-HLA genetic risk in multiple sclerosis, demonstrating a role for this pathway in the pathophysiology of this disease. In addition, we report altered expression of the genes encoding IL7Ralpha and its ligand, IL7, in the cerebrospinal fluid compartment of individuals with multiple sclerosis.
Multiple sclerosis (MS) is universally found to be more prevalent in women than men. This has led to extensive studies of differences in the immune system or nervous system between women and men, which might be caused by the effects of gonadal hormones, genetic differences, and different environmental exposures and modern lifestyle in men and women. We review the effects of sex and gender from a genetic, immunological and clinical point of view. We discuss the effects of sex on the clinical expression of MS and responses to therapy, as well as issues concerning pregnancy.
Multiple sclerosis (MS) is a prevalent inflammatory disease of the central nervous system that often leads to disability in young adults. Treatment options are limited and often only partly effective. The disease is likely caused by a complex interaction between multiple genes and environmental factors, leading to inflammatory-mediated central nervous system deterioration. A series of genomic studies have confirmed a central role for the immune system in the development of MS, including genetic association studies which have now dramatically expanded the roster of MS susceptibility genes beyond the longstanding HLA association in MS first identified nearly 40 years ago. Advances in technology together with novel models for collaborative across research groups have enabled the discovery of more than 50 non-HLA genetic risk factors associated with MS. However, with a large proportion of the disease heritability still unaccounted for, current studies are now geared towards identification of causal alleles, associated pathways, epigenetic mechanisms, and gene-environment interactions. This article will review recent efforts in addressing the genetics of MS and the challenges posed by an ever increasing amount of analyzable data which is spearheading development of novel statistical methods necessary to cope with such complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.