In this work, silicon/carbon composites for anode electrodes of Li-ion batteries are prepared from Elkem’s Silgrain® line. Gentle ball milling is used to reduce particle size of Silgrain, and the resulting Si powder consists of micrometic Si with some impurities. Silicon/carbon composite with CMC/SBR as a dual binder can achieve more than 1200 cycles with a capacity of 1000 mAh g−1 of Si. This excellent electrochemical performance can be attributed to the use of a buffer as a solvent to control the pH of the electrode slurry, and hence the bonding properties of the binder to the silicon particles. In addition, the use of FEC as an electrolyte additive is greatly contributing to a stabilized cycling by creating a more robust SEI layer. This work clearly demonstrates the potential of industrial battery grade silicon from Elkem.
Silicon is often regarded as a likely candidate to replace graphite as the main active anode material in next-generation lithium ion batteries; however, a number of problems impacting its cycle stability have limited its commercial relevance. One approach to solving these issues involves the use of convertible silicon sub-oxides. In this work we have investigated amorphous silicon sub-nitride as an alternative convertible silicon compound by comparing the electrochemical performance of a-SiNx thin films with compositions ranging from pure Si to SiN0.89. We have found that increasing the nitrogen content gradually reduces the reversible capacity of the material, but also drastically increases its cycling stability, e.g. 40 nm a-SiN0.79 thin films exhibited a stable capacity of more than 1,500 mAh/g for 2,000 cycles. Consequently, by controlling the nitrogen content, this material has the exceptional ability to be tuned to satisfy a large range of different requirements for capacity and stability.
In modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a “Holy Grail” among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiN x ) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials. Such material can be synthesized in a form of nanoparticles with seamlessly tunable chemical composition and particle size and, therefore, be used for the preparation of anodes for Li-based batteries directly through conventional slurry processing. Such SiN x materials were found to be capable of delivering high capacity that is controlled by the initial chemical composition of the nanoparticles. They exhibit an exceptional cycling stability, largely maintaining structural integrity of the nanoparticles and the complete electrodes, thus delivering stable electrochemical performance over the course of 1000 charge/discharge cycles. Such stability is achieved through the in situ conversion reaction, which was herein unambiguously confirmed by pair distribution function analysis of cycled SiN x nanoparticles revealing that active silicon domains and a stabilizing Li2SiN2 phase are formed in situ during the initial lithiation.
The wide distribution and dominance of invasive inbreeding species in many forest ecosystems seems paradoxical in face of their limited genetic variation. Successful establishment of invasive species in new areas is nevertheless facilitated by clonal reproduction: parthenogenesis, regular self-fertilization, and regular inbreeding. The success of clonal lineages in variable environments has been explained by two models, the frozen niche variation (FNV) model and the general-purpose genotype (GPG) model. We tested these models on a widely distributed forest pest that has been recently established in Costa Rica—the sibling-mating ambrosia beetle Xylosandrus morigerus. Two deeply diverged mitochondrial haplotypes coexist at multiple sites in Costa Rica. We find that these two haplotypes do not differ in their associations with ecological factors. Overall the two haplotypes showed complete overlap in their resource utilization; both genotypes have broad niches, supporting the GPG model. Thus, probable or not, our findings suggest that X. morigerus is a true ecological generalist. Clonal aspects of reproduction coupled with broad niches are doubtless important factors in the successful colonization of new habitats in distant regions.
Silicon has been the subject of an extensive research effort aimed at developing new anode materials for lithium ion batteries due to its large specific and volumetric capacity. However, commercial use is limited by a number of degradation problems, many of which are related to the large volume change the material undergoes during cycling in combination with limited lithium-diffusivity. Silicon rich silicon oxides (SiOx), which converts into active silicon and inactive lithium oxide during the initial lithiation, have attracted some attention as a possible solution to these issues. In this work we present an investigation of silicon rich amorphous silicon nitride (a-SiNx) as an alternative convertible anode material. Amorphous SiN0.89 thin films deposited by plasma enhanced chemical vapour deposition show reversible reactions with lithium when cycled between 0.05 and 1.0 V vs. Li+/Li. This material delivers a reversible capacity of approximately 1,200 mAh/g and exhibits excellent cycling stability, with 41 nm a-SiN0.89 thin film electrodes showing negligible capacity degradation over more than 2,400 cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.