Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m 2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%-19% increases of soil respiration in response to warming and decreases of 3%-29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5-10 cm, a mean Q 10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q 10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%-22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q 10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables.
ABSTRACTal., 1998). Cultivated plants are thought to have the major part of their root system within this depth, but (Robinson, 1986; ing in the ability of catch crops to take up NO 3 from deep soil layers. Strebel and Duynisveld, 1989), and thus for reducing Nitrogen uptake was studied over a 6-d period at the end of October NO 3 leaching to ground water (Thorup-Kristensen, 2001). (Borg and Grimes, 1986). Studies of the root growth of radish, winter rye, and ryegrass, respectively. The measurements obcatch crops below 1-m depth have shown large differtained with the minirhizotron method were highly relevant for evaluatences in root depth and distribution from one species ing N uptake from different soil layers, and root depths of the catch to the next (Barraclough, 1989; Materechera et al., 1993; crops were important for N depletion. Knowledge about root growth Thorup-Kristensen, 2001). and catch crops in soils below 1-m depth. Significant N uptake has been found at 0.9 to 1.5 m for winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), sugarbeet (Beta vulgaris L. var. altissima Dö ll), corn
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. b s t r a c tOne of the core ideas behind organic production is that cropping systems should be less dependent on import of resources, and minimize negative effects on the surrounding environment compared to conventional production. However, even when clearly complying with regulations for organic production, it is not always obvious that these goals are reached. As an example, strong dependence on import of manure is often seen in current organic production, especially in systems producing high value crops such as vegetable crops.The aim of the present study was to test novel approaches to organic rotations, designed to reduce the reliance on import of external resources significantly. We compared a conventional system (C) and an organic system relying on manure import for soil fertility (O1) to two novel systems (O2 and O3) all based on the same crop rotation. The O2 and O3 systems represented new versions of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity and natural pest regulation in the crops. Reliance on resource import to the systems differed, with average annual import of nitrogen fertilizers of 149, 85, 25 and 25 kg N ha −1 in the C, O1, O2 and O3 systems, respectively. As expected, the crop yields were lower in the organic system. It differed strongly among crop species, but on average the organic crops yielded c. 82% of conventional yields in all three organic systems, when calculated based on the area actually grown with the main crops. In the O3 system some of the area of the vegetable fields was allocated to intercrops, so vegetable yields calculated based on total land area was only 63% of conventional yields.Differences in quality parameters of the harvested crops, i.e. nutrient content, dry matter content or damages by pests or diseases were few and not systematic, whereas clear effects on nutrient balances and nitrogen leaching indicators were found. Root growth of all crops was studied in the C and O2 system, but only few effects of cropping system on root growth was observed. However, the addition of green manures to the systems almost doubled the average soil exploration by active root systems during the rotation from only 21% in C to 38% in O2 when measured to 2.4 m depth. This relates well to the observed differences in subsoil inorganic N content (N inorg , 1-2 m depth) across the whole rotation (74 and 61 kg N ha −1 in C and O1 vs. only 22 and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.