A growing number of studies approach the brain as a complex network, the so-called 'connectome'. Adopting this framework, we examine what types or extent of damage the brain can withstand-referred to as network 'robustness'-and conversely, which kind of distortions can be expected after brain lesions. To this end, we review computational lesion studies and empirical studies investigating network alterations in brain tumour, stroke and traumatic brain injury patients. Common to these three types of focal injury is that there is no unequivocal relationship between the anatomical lesion site and its topological characteristics within the brain network. Furthermore, large-scale network effects of these focal lesions are compared to those of a widely studied multifocal neurodegenerative disorder, Alzheimer's disease, in which central parts of the connectome are preferentially affected. Results indicate that human brain networks are remarkably resilient to different types of lesions, compared to other types of complex networks such as random or scale-free networks. However, lesion effects have been found to depend critically on the topological position of the lesion. In particular, damage to network hub regions-and especially those connecting different subnetworks-was found to cause the largest disturbances in network organization. Regardless of lesion location, evidence from empirical and computational lesion studies shows that lesions cause significant alterations in global network topology. The direction of these changes though remains to be elucidated. Encouragingly, both empirical and modelling studies have indicated that after focal damage, the connectome carries the potential to recover at least to some extent, with normalization of graph metrics being related to improved behavioural and cognitive functioning. To conclude, we highlight possible clinical implications of these findings, point out several methodological limitations that pertain to the study of brain diseases adopting a network approach, and provide suggestions for future research.
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong–Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
The use of diffusion MRI (dMRI) for assisting in the planning of neurosurgery has become increasingly common practice, allowing to non-invasively map white matter pathways via tractography techniques. Limitations of earlier pipelines based on the diffusion tensor imaging (DTI) model have since been revealed and improvements were made possible by constrained spherical deconvolution (CSD) pipelines. CSD allows to resolve a full white matter (WM) fiber orientation distribution (FOD), which can describe so-called "crossing fibers": complex local geometries of WM tracts, which DTI fails to model. This was found to have a profound impact on tractography results, with substantial implications for presurgical decision making and planning. More recently, CSD itself has been extended to allow for modeling of other tissue compartments in addition to the WM FOD, typically resulting in a 3-tissue CSD model. It seems likely this may improve the capability to resolve WM FODs in the presence of infiltrating tumor tissue. In this work, we evaluated the performance of 3-tissue CSD pipelines, with a focus on within-tumor tractography. We found that a technique named single-shell 3-tissue CSD (SS3T-CSD) successfully allowed tractography within infiltrating gliomas, without increasing existing single-shell dMRI acquisition requirements.1 The term "tissue" is used in an abstract sense in context of these multi-tissue CSD techniques: it refers in general to extra signal compartments in the model, even e.g. (cerebrospinal) fluid.
Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.
Background There is increasing recognition that health care providers need to focus attention, and be judged against, the impact they have on the health outcomes experienced by patients. The measurement of health outcomes as a routine part of clinical documentation is probably the only scalable way of collecting outcomes evidence, since secondary data collection is expensive and error-prone. However, there is uncertainty about whether routinely collected clinical data within electronic health record (EHR) systems includes the data most relevant to measuring and comparing outcomes and if those items are collected to a good enough data quality to be relied upon for outcomes assessment, since several studies have pointed out significant issues regarding EHR data availability and quality. Objective In this paper, we first describe a practical approach to data quality assessment of health outcomes, based on a literature review of existing frameworks for quality assessment of health data and multistakeholder consultation. Adopting this approach, we performed a pilot study on a subset of 21 International Consortium for Health Outcomes Measurement (ICHOM) outcomes data items from patients with congestive heart failure. Methods All available registries compatible with the diagnosis of heart failure within an EHR data repository of a general hospital (142,345 visits and 12,503 patients) were extracted and mapped to the ICHOM format. We focused our pilot assessment on 5 commonly used data quality dimensions: completeness, correctness, consistency, uniqueness, and temporal stability. Results We found high scores (>95%) for the consistency, completeness, and uniqueness dimensions. Temporal stability analyses showed some changes over time in the reported use of medication to treat heart failure, as well as in the recording of past medical conditions. Finally, the investigation of data correctness suggested several issues concerning the characterization of missing data values. Many of these issues appear to be introduced while mapping the IMASIS-2 relational database contents to the ICHOM format, as the latter requires a level of detail that is not explicitly available in the coded data of an EHR. Conclusions Overall, results of this pilot study revealed good data quality for the subset of heart failure outcomes collected at the Hospital del Mar. Nevertheless, some important data errors were identified that were caused by fundamentally different data collection practices in routine clinical care versus research, for which the ICHOM standard set was originally developed. To truly examine to what extent hospitals today are able to routinely collect the evidence of their success in achieving good health outcomes, future research would benefit from performing more extensive data quality assessments, including all data items from the ICHOM standards set and across multiple hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.